This content will become publicly available on June 18, 2026
Title: Quorum sensing mediates morphology and motility transitions in the model archaeon Haloferax volcanii
ABSTRACT Quorum sensing (QS) is a population density-dependent mechanism of intercellular communication, whereby microbes secrete and detect signals to regulate behaviors such as virulence and biofilm formation. Although QS is well-studied in bacteria, little is known about cell-cell communication in archaea. The model archaeonHaloferax volcaniican transition from motile rod-shaped cells to non-motile disks as population density increases. In this report, we demonstrate that this transition is induced by a secreted small molecule present in cell-free conditioned medium (CM). The CM also elicits a response from a bacterial QS bioreporter, suggesting the potential for inter-domain crosstalk. To investigate theHfx. volcaniiQS response, we performed quantitative proteomics and detected significant differential abundances of 236 proteins in the presence of CM, including proteins involved in cell structure, motility, glycosylation, and two-component systems. We also demonstrate that a mutant lacking the cell shape regulatory factor DdfA does not undergo shape and motility transitions in the presence of CM, allowing us to identify protein abundance changes in the QS response pathway separate from those involved in shape and motility. In the ∆ddfAstrain, only 110 proteins had significant differential abundance, and comparative analysis of these two proteomics experiments enabled us to identify proteins dependent on and independent of DdfA in the QS response pathway. Our study provides the first detailed analysis of QS pathways in any archaeon, strengthening our understanding of archaeal communication as well as providing the framework for studying intra- and interdomain crosstalk. IMPORTANCEUnderstanding the complex signaling networks in microbial communities has led to many invaluable applications in medicine and industry. Yet, while archaea are ubiquitous and play key roles in nutrient cycling, little is known about the roles of archaeal intra- and interspecies cell-cell communication in environments such as the human, soil, and marine microbiomes. In this study, we established the first robust system for studying quorum sensing in archaea by using the model archaeonHaloferax volcanii. We demonstrated that different behaviors, such as cell shape and motility, are mediated by a signal molecule, and we uncovered key regulatory components of the signaling pathway. This work advances our understanding of microbial communication, shedding light on archaeal intra- and interdomain interactions, and contributes to a more complete picture of the interconnected networks of life on Earth. more »« less
ABSTRACT Archaea, once thought limited to extreme environments, are now recognized as ubiquitous and fundamental players in global ecosystems. While morphologically similar to bacteria, they are a distinct domain of life and are evolutionarily closer to eukaryotes. The development of model archaeal systems has facilitated studies that have underscored unique physiological, biochemical, and genetic characteristics of archaea.Haloferax volcaniistands out as a model archaeon due to its ease of culturing, ability to grow on defined media, amenability to genetic and biochemical methods, as well as the support from a highly collaborative community. This haloarchaeon has been instrumental in exploring diverse aspects of archaeal biology, ranging from polyploidy, replication origins, and post-translational modifications to cell surface biogenesis, metabolism, and adaptation to high-salt environments. The extensive use ofHfx. volcaniifurther catalyzed the development of new technologies and databases, facilitating discovery-driven research that offers significant implications for biotechnology, biomedicine, and core biological questions.
Chatterjee, Priyanka; Garcia, Marco A; Cote, Jacob A; Yun, Kun; Legerme, Georgio P; Habib, Rumi; Tripepi, Manuela; Young, Criston; Kulp, Daniel; Dyall-Smith, Mike; et al
(, Journal of Bacteriology)
Maupin-Furlow, Julie A
(Ed.)
ABSTRACT Many prokaryotes use swimming motility to move toward favorable conditions and escape adverse surroundings. Regulatory mechanisms governing bacterial flagella-driven motility are well-established; however, little is yet known about the regulation underlying swimming motility propelled by the archaeal cell surface structure, the archaella. Previous research showed that the deletion of the adhesion pilins (PilA1-6), subunits of the type IV pili cell surface structure, renders the model archaeonHaloferax volcaniinon-motile. In this study, we used ethyl methanesulfonate mutagenesis and a motility assay to identify motile suppressors of the ∆pilA[1-6] strain. Of the eight suppressors identified, six contain missense mutations in archaella biosynthesis genes,arlIandarlJ. In transexpression ofarlIandarlJmutant constructs in the respective multi-deletion strains ∆pilA[1-6]∆arlIand ∆pilA[1-6]∆arlJconfirmed their role in suppressing the ∆pilA[1-6] motility defect. Additionally, three suppressors harbor co-occurring disruptive missense and nonsense mutations incirA, a gene encoding a proposed regulatory protein. A deletion ofcirAresulted in hypermotility, whilecirAexpressionin transin wild-type cells led to decreased motility. Moreover, quantitative real-time PCR analysis revealed that in wild-type cells, higher expression levels ofarlI,arlJ, and the archaellin genearlA1were observed in motile early-log phase rod-shaped cells compared to non-motile mid-log phase disk-shaped cells. Conversely, ∆cirAcells, which form rods during both early- and mid-log phases, exhibited similar expression levels ofarlgenes in both growth phases. Our findings contribute to a deeper understanding of the mechanisms governing archaeal motility, highlighting the involvement of ArlI, ArlJ, and CirA in pilin-mediated motility regulation.IMPORTANCEArchaea are close relatives of eukaryotes and play crucial ecological roles. Certain behaviors, such as swimming motility, are thought to be important for archaeal environmental adaptation. Archaella, the archaeal motility appendages, are evolutionarily distinct from bacterial flagella, and the regulatory mechanisms driving archaeal motility are largely unknown. Previous research has linked the loss of type IV pili subunits to archaeal motility suppression. This study reveals threeHaloferax volcaniiproteins involved in pilin-mediated motility regulation, offering a deeper understanding of motility regulation in this understudied domain while also paving the way for uncovering novel mechanisms that govern archaeal motility. Understanding archaeal cellular processes will help elucidate the ecological roles of archaea as well as the evolution of these processes across domains.
Dallon, Emma; Moran, Haley M; Chidambaran, Sadhana R; Kian, Arman; Huang, Betty_Y H; Fried, Stephen D; DiRuggiero, Jocelyne
(, mSphere)
Ellermeier, Craig D
(Ed.)
ABSTRACT Oxidative stress induces a wide range of cellular damage, often causing disease and cell death. While many organisms are susceptible to the effects of oxidative stress, haloarchaea have adapted to be highly resistant. Several aspects of the haloarchaeal oxidative stress response have been characterized; however, little is known about the impacts of oxidative stress at the translation level. Using the model archaeonHaloferax volcanii, we performed RNA-seq and ribosome profiling (Ribo-seq) to characterize the global translation landscape during oxidative stress. We identified 281 genes with differential translation efficiency (TE). Downregulated genes were enriched in ribosomal and translation proteins, in addition to peroxidases and genes involved in the TCA cycle. We also identified 42 small noncoding RNAs (sRNAs) with ribosome occupancy. Size distributions of ribosome footprints revealed distinct patterns for coding and noncoding genes, with 12 sRNAs matching the pattern of coding genes, and mass spectrometry confirming the presence of seven small proteins encoded by these sRNAs. However, the majority of sRNAs with ribosome occupancy had no evidence of coding potential. Of these ribosome-associated sRNAs, 12 had differential ribosome occupancy or TE during oxidative stress, suggesting that they may play a regulatory role during the oxidative stress response. Our findings on ribosomal regulation during oxidative stress, coupled with potential roles for ribosome-associated noncoding sRNAs and sRNA-derived small proteins inH. volcanii, revealed additional regulatory layers and underscored the multifaceted architecture of stress-responsive regulatory networks.IMPORTANCEArchaea are found in diverse environments, including as members of the human microbiome, and are known to play essential ecological roles in major geochemical cycles. The study of archaeal biology has expanded our understanding of the evolution of eukaryotes, uncovered novel biological systems, and revealed new opportunities for applications in biotechnology and bioremediation. Many archaeal systems, however, remain poorly characterized. UsingHaloferax volcaniias a model, we investigated the global translation landscape during oxidative stress. Our findings expand current knowledge of translational regulation in archaea and further illustrate the complexity of stress-responsive gene regulation.
Abstract Lipoproteins are major constituents of prokaryotic cell surfaces. In bacteria, lipoprotein attachment to membrane lipids is catalyzed by prolipoprotein diacylglyceryl transferase (Lgt). However, no Lgt homologs have been identified in archaea, suggesting the unique archaeal membrane lipids require distinct enzymes for lipoprotein lipidation. Here, we performedin silicopredictions for all major archaeal lineages and revealed a high prevalence of lipoproteins across the domain Archaea. Using comparative genomics, we identified the first set of candidates for archaeal lipoprotein biogenesis components (Ali). Genetic and biochemical characterization confirmed two paralogous genes,aliAandaliB, are important for lipoprotein lipidation in the archaeonHaloferax volcanii. Disruption of AliA- and AliB-mediated lipoprotein lipidation results in severe growth defects, decreased motility, and cell-shape alterations, underscoring the importance of lipoproteins in archaeal cell physiology. AliA and AliB also exhibit different enzymatic activities, including potential substrate selectivity, uncovering a new layer of regulation for prokaryotic lipoprotein lipidation.
Parrett, Gabriel A; Haft, Daniel H; Ruiz, Maida; Garcia-Pichel, Ferran; Ebmeier, Christopher C; Risser, Douglas D
(, mSphere)
Ellermeier, Craig D
(Ed.)
ABSTRACT Exosortases are involved in trafficking proteins containing PEP-CTERM domains to the exterior of gram-negative bacterial cells. The role of these proteins in cyanobacteria, where such homologs are common, has not been defined. The filamentous cyanobacteriumNostoc punctiformecontains a single putative exosortase, designated cyanoexosortase B (CrtB), implicated by previous work both in motility and in the production of the UV-absorbing pigment, scytonemin. To determine the role ofcrtBinN. punctiforme, acrtB-deletion strain (ΔcrtB) was generated. ΔcrtBpresented the loss of motility, biofilm formation, and scytonemin production. In the case of motility, the ΔcrtBmutant exhibited a specific defect in the ability of hormogonia (specialized motile filaments) to adhere to hormogonium polysaccharide (HPS), and several PEP-CTERM proteins expressed in motile hormogonia were differentially abundant in the exoproteome of the wild-type compared with the ΔcrtBstrain. These results are consistent with the hypothetical role of CrtB in the processing and export of PEP-CTERM proteins that play a critical role in stabilizing the interaction between the filament surface and HPS to facilitate motility and biofilm formation. In the case of scytonemin—the late biosynthetic steps of which occur in the periplasm and whose operon contains several putative PEP-CTERM proteins—ΔcrtBfailed to produce it. Given the abundance of putative PEP-CTERM proteins encoded in theN. punctiformegenome and the fact that this study only associates a fraction of them with biological functions, it seems likely that CrtB may play an important role in other biological processes in cyanobacteria.IMPORTANCEIn gram-negative bacteria, exosortases facilitate the trafficking of proteins to the exterior of the cell where they have been implicated in stabilizing the association of extracellular polymeric substances (EPS) with the cell surface to facilitate biofilm formation and flocculation, but the role of exosortases in cyanobacteria has not been explored. Here, we characterize the role of cyanoexosortase B (CrtB) in the filamentous cyanobacteriumNostoc punctiforme, demonstrating thatcrtBis essential for motility, biofilm formation, and the production of the sunscreen pigment scytonemin. These findings have important implications for understanding motility and biofilm formation in filamentous cyanobacteria as well as efforts toward the heterologous production of scytonemin in non-native hosts.
Chatterjee, Priyanka, Consoli, Caroline E, Schiller, Heather, Winter, Kiersten K, McCallum, Monica E, Schulze, Stefan, and Pohlschroder, Mechthild. Quorum sensing mediates morphology and motility transitions in the model archaeon Haloferax volcanii. Retrieved from https://par.nsf.gov/biblio/10610929. mBio . Web. doi:10.1128/mbio.00906-25.
Chatterjee, Priyanka, Consoli, Caroline E, Schiller, Heather, Winter, Kiersten K, McCallum, Monica E, Schulze, Stefan, & Pohlschroder, Mechthild. Quorum sensing mediates morphology and motility transitions in the model archaeon Haloferax volcanii. mBio, (). Retrieved from https://par.nsf.gov/biblio/10610929. https://doi.org/10.1128/mbio.00906-25
Chatterjee, Priyanka, Consoli, Caroline E, Schiller, Heather, Winter, Kiersten K, McCallum, Monica E, Schulze, Stefan, and Pohlschroder, Mechthild.
"Quorum sensing mediates morphology and motility transitions in the model archaeon Haloferax volcanii". mBio (). Country unknown/Code not available: American Society for Microbiology. https://doi.org/10.1128/mbio.00906-25.https://par.nsf.gov/biblio/10610929.
@article{osti_10610929,
place = {Country unknown/Code not available},
title = {Quorum sensing mediates morphology and motility transitions in the model archaeon Haloferax volcanii},
url = {https://par.nsf.gov/biblio/10610929},
DOI = {10.1128/mbio.00906-25},
abstractNote = {ABSTRACT Quorum sensing (QS) is a population density-dependent mechanism of intercellular communication, whereby microbes secrete and detect signals to regulate behaviors such as virulence and biofilm formation. Although QS is well-studied in bacteria, little is known about cell-cell communication in archaea. The model archaeonHaloferax volcaniican transition from motile rod-shaped cells to non-motile disks as population density increases. In this report, we demonstrate that this transition is induced by a secreted small molecule present in cell-free conditioned medium (CM). The CM also elicits a response from a bacterial QS bioreporter, suggesting the potential for inter-domain crosstalk. To investigate theHfx. volcaniiQS response, we performed quantitative proteomics and detected significant differential abundances of 236 proteins in the presence of CM, including proteins involved in cell structure, motility, glycosylation, and two-component systems. We also demonstrate that a mutant lacking the cell shape regulatory factor DdfA does not undergo shape and motility transitions in the presence of CM, allowing us to identify protein abundance changes in the QS response pathway separate from those involved in shape and motility. In the ∆ddfAstrain, only 110 proteins had significant differential abundance, and comparative analysis of these two proteomics experiments enabled us to identify proteins dependent on and independent of DdfA in the QS response pathway. Our study provides the first detailed analysis of QS pathways in any archaeon, strengthening our understanding of archaeal communication as well as providing the framework for studying intra- and interdomain crosstalk. IMPORTANCEUnderstanding the complex signaling networks in microbial communities has led to many invaluable applications in medicine and industry. Yet, while archaea are ubiquitous and play key roles in nutrient cycling, little is known about the roles of archaeal intra- and interspecies cell-cell communication in environments such as the human, soil, and marine microbiomes. In this study, we established the first robust system for studying quorum sensing in archaea by using the model archaeonHaloferax volcanii. We demonstrated that different behaviors, such as cell shape and motility, are mediated by a signal molecule, and we uncovered key regulatory components of the signaling pathway. This work advances our understanding of microbial communication, shedding light on archaeal intra- and interdomain interactions, and contributes to a more complete picture of the interconnected networks of life on Earth.},
journal = {mBio},
publisher = {American Society for Microbiology},
author = {Chatterjee, Priyanka and Consoli, Caroline E and Schiller, Heather and Winter, Kiersten K and McCallum, Monica E and Schulze, Stefan and Pohlschroder, Mechthild},
editor = {Newman, Dianne K}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.