skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploration of a Bridge Program to Increase Student Understanding of Emerging Technological Fields
Bridge programs are common interventions colleges implement to improve student recruitment, retention, and performance. Key components are typically specific content instruction, tutoring, mentoring, and college orientation. This paper provides the results of a short-duration summer bridge program designed to increase student awareness of emerging technological fields in engineering technology (ET), specifically the semiconductor and data center industries. High school students in the summer bridge program were provided with information about NOVA’s ET programs, participated in hands-on activities around topics important to semiconductor and data center operations (DCO) technician careers, and met industry representatives through industry site tours. Student data includes participant changes in understanding of ET educational and career pathways, knowledge of OSHA and industrial safety, understanding of college success skills and strategies, and interest in ET careers. Results of the study demonstrated that students of all subgroups (e.g., gender, grade level, race, ethnicity) exhibited equivalent improvement in their understanding of ET education and career pathways while student outcomes in OSHA and college success skills varied by subgroup. Based on these results, the use of a short-duration bridge program is one mechanism for post-secondary institutions to increase awareness of emerging technologies and educational pathways to support careers in those technologies  more » « less
Award ID(s):
2055717
PAR ID:
10610930
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Zenodo
Date Published:
Journal Name:
Journal of advanced technological education
ISSN:
2832-9627
Subject(s) / Keyword(s):
Bridge Programs Engineering Technology semiconductors data center operations student programs emerging technologies industry site visits
Format(s):
Medium: X
Right(s):
Creative Commons Attribution 4.0 International
Sponsoring Org:
National Science Foundation
More Like this
  1. Markets with emerging technologies face a challenge in finding employees with the knowledge base and skills necessary to fulfill their workforce needs. Generating awareness of these career fields is essential to meet workforce needs now and into the future. This paper discusses the extent to which educator awareness of the engineering technology (ET) and data center operations (DCO) programs and careers change as a result of participation in a professional learning (PL) externship program. Secondary educators in the PL program learned specifics of Northern Virginia Community College’s (NOVA) ET programs, toured an ET facility and data center, and developed a plan to disseminate the ET credentialing and career information to their colleagues, students, and parents. In post-participation surveys, educators indicated increased awareness of and interest in ET education programs and career pathways. Additionally, educators indicated an understanding of the industry’s need for ET talent and the skills and technical knowledge students need for ET careers. The data supports an educator externship as a PL mechanism for post-secondary institutions to increase awareness of the educational pathways and careers in emerging technologies. 
    more » « less
  2. This Work in Progress (WIP) paper describes the development of a middle school program focused on an integrated STEM architectural engineering design project and exploration of career pathways. The current engineering workforce is increasingly aging, needing new engineering graduates to meet the industry demands. It is crucial to create inclusive educational programs in STEM to expose and connect with youths from diverse backgrounds, especially the demographics that are underrepresented, in STEM career paths. Middle school is a pivotal time for generating students’ awareness of and promoting pathways into STEM careers; however, opportunities to engage in engineering are often lacking or nonexistent, particularly for low-income students. Additionally, low-income students may bring particular experiences and skills from their backgrounds to engineering that may increase the innovation of engineering solutions. These assets are important to recognize and cultivate in young students. The Middle School Architectural Engineering Pilot Program (MSAEPP), drawing from social cognitive career theory and identity-based motivation, is an intervention designed to affect STEM-related content and STEM identities, motivation, and career goals for low-income students using relatable topics within the building industry. The focus on architectural engineering activities is because buildings, and the industry they represent, touch everyone’s lives. The MSAEPP is planned to be implemented through the Talent Search Programs at middle schools in Pennsylvania. The Talent Search Program is one of the Federal TRIO Programs dedicated to assisting high school students in furthering their education. Penn State Talent Search Programs serve 22 schools in 8 impoverished school districts. The pilot program engages middle school students (seventh and eighth grade) in architectural engineering-related lessons and activities, by exploring engineering identities interactions with architectural engineering industry professionals, and by planning potential career pathways in architectural engineering and other STEM careers with Talent Search Counselors. The purpose of this paper is to present the background and process used in this funded NSF project for developing the suite of architectural engineering related lessons and activities and the research plan for answering the research question: How do the combination of meaningful engineering learning, exposure to professional engineers, and career planning, focused on building industry engineering applications, increase identity-based motivation of students from low-income households and marginalized students in pursuing STEM careers? Answering this question will inform future work developing interventions that target similar goals and will validate and expand the identity-based motivation framework. Keywords: middle school, identity, motivation, informal education. 
    more » « less
  3. This Work in Progress (WIP) paper describes the development of a middle school program focused on an integrated STEM architectural engineering design project and exploration of career pathways. The current engineering workforce is increasingly aging, needing new engineering graduates to meet the industry demands. It is crucial to create inclusive educational programs in STEM to expose and connect with youths from diverse backgrounds, especially the demographics that are underrepresented, in STEM career paths. Middle school is a pivotal time for generating students’ awareness of and promoting pathways into STEM careers; however, opportunities to engage in engineering are often lacking or nonexistent, particularly for low-income students. Additionally, low-income students may bring particular experiences and skills from their backgrounds to engineering that may increase the innovation of engineering solutions. These assets are important to recognize and cultivate in young students. The Middle School Architectural Engineering Pilot Program (MSAEPP), drawing from social cognitive career theory and identity-based motivation, is an intervention designed to affect STEM related content and STEM identities, motivation, and career goals for low-income students using relatable topics within the building industry. The focus on architectural engineering activities is because buildings, and the industry they represent, touch everyone’s lives. The MSAEPP is planned to be implemented through the Talent Search Programs at middle schools in Pennsylvania. The Talent Search Program is one of the Federal TRIO Programs dedicated to assisting high school students in furthering their education. Penn State Talent Search Programs serve 22 schools in 8 impoverished school districts. The pilot program engages middle school students (seventh and eighth grade) in architectural engineering related lessons and activities, by exploring engineering identities interactions with architectural engineering industry professionals, and by planning potential career pathways in architectural engineering and other STEM careers with Talent Search Counselors. The purpose of this paper is to present the background and process used in this funded NSF project for developing the suite of architectural engineering related lessons and activities and the research plan for answering the research question: How does the combination of meaningful engineering learning, exposure to professional engineers, and career planning, focused on building industry engineering applications, increase identity-based motivation of students from low-income households and marginalized students in pursuing STEM careers? Answering this question will inform future work developing interventions that target similar goals and will validate and expand the identity-based motivation framework. Keywords: middle school, identity, motivation, informal education. 
    more » « less
  4. The ongoing workforce shortage of skilled and diverse cybersecurity professionals coupled with the continued upward trend of cybercrime has led to an increased number of funding opportunities from the federal government to support projects focused on technical skills development. Significant emphasis is placed on academic transfer pathways and education-to-career pathways for students from K-12 to community college and beyond. Utilizing funding from multiple sources, faculty have intertwined grant project activities to increase awareness of cybersecurity careers and academic pathways, emphasizing digital forensics and incident response. The two grant projects, Cyber Up! and GenCyber Girls, aimed to develop college-level curriculum and cybersecurity workshops for female high school students. Project activities were synthesized to create a summer camp for high school students based on the curriculum developed for the college programs in digital forensics and incident response. The synergy between the projects has shown an increase in female participation in the digital forensics course and helped build interest in cybersecurity careers among K-12 students. 
    more » « less
  5. This project focuses on developing three technical courses for lower-division electrical engineering education to bridge the gap between Career and Technical Education (CTE) programs in high schools, engineering programs at community colleges, and lower-division electrical engineering courses at four-year universities. The primary goal of the project is to create a seamless academic transition by providing electrical engineering students with the necessary foundational knowledge in analog and digital systems, as well as hands-on experience with laboratory measurement tools. The courses utilize industry-relevant technologies such as LabView, MATLAB, PLC programming, and ready-to-use microcontroller boards to facilitate experiential learning at lower division courses. Early exposure to these tools and systems equips students with practical skills that not only prepare them for further academic pursuits but also align them with workforce demands in industries that increasingly rely on automation, data acquisition, and real-time system controls. The success of this project is attributed to its emphasis on design and project-based learning, which fosters critical thinking and problem-solving skills essential for real-world applications. By integrating design principles early in students' educational experiences, they are better prepared to tackle complex engineering problems as they progress through their academic careers. The use of project-based learning allows students to apply theoretical knowledge to tangible, real-world projects, improving their engagement and deepening their understanding of electrical engineering concepts. Practical tools like MATLAB and microcontroller boards in entry-level courses not only motivates students to pursue engineering but also increases retention rates in STEM fields, a key metric for academic success. This project is also advocating for early exposure to hands-on technical skills as a way to better prepare students for the workforce. By focusing on skill development in both CTE programs and early college courses, students are equipped with a stronger foundation for electrical engineering careers and are more likely to succeed in upper-division coursework and beyond. The seamless integration of high school, community college, and university programs ensures that students acquire both the theoretical and practical skills necessary to be successful in an increasingly technology-driven economy. Moreover, the project's use of industry-standard tools, coupled with its focus on bridging academic gaps, provides a sustainable model for developing a skilled and versatile workforce, addressing the growing need for engineers proficient in both design and system implementation. 
    more » « less