skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 10, 2026

Title: Efficient, Portable, Census-Polymorphic Choreographic Programming
Choreographic programming (CP) is a paradigm for implementing distributed systems that uses a single global program to define the actions and interactions of all participants. Library-level CP implementations, like HasChor, integrate well with mainstream programming languages but have several limitations: Their conditionals require extra communication; they require specific host-language features (e.g., monads); and they lack support for programming patterns that are essential for implementing realistic distributed applications. We make three contributions to library-level CP to specifically address these challenges. First, we propose and formalizeconclavesandmultiply-located values, which enable efficient conditionals in library-level CP without redundant communication. Second, we proposecensus polymorphism, a technique for abstracting over the number of participants in a choreography. Third, we introduce a design pattern for library-level CP in host languages without support for monads. We demonstrate these contributions via implementations in Haskell, Rust, and TypeScript.  more » « less
Award ID(s):
2145367
PAR ID:
10611072
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Programming Languages
Volume:
9
Issue:
PLDI
ISSN:
2475-1421
Page Range / eLocation ID:
1143 to 1166
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The work of Fuzz has pioneered the use of functional programming languages where types allow reasoning about the sensitivity of programs. Fuzz and subsequent work (e.g., DFuzz and Duet) use advanced technical devices like linear types, modal types, and partial evaluation. These features usually require the design of a new programming language from scratch—a significant task on its own! While these features are part of the classical toolbox of programming languages, they are often unfamiliar to non-experts in this field. Fortunately, recent studies (e.g., Solo) have shown that linear and complex types in general, are not strictly needed for the task of determining programs’ sensitivity since this can be achieved by annotating base types with static sensitivity information. In this work, we take a different approach. We propose to enrich base types with information about the metric relation between values, and we present the novel idea of applyingparametricityto derive direct proofs for the sensitivity of functions. A direct consequence of our result is thatcalculating and provingthe sensitivity of functions is reduced to simply type-checking in a programming language with support for polymorphism and type-level naturals. We formalize our main result in a calculus, prove its soundness, and implement a software library in the programming language Haskell–where we reason about the sensitivity of canonical examples. We show that the simplicity of our approach allows us to exploit the type inference of the host language to support a limited form of sensitivity inference. Furthermore, we extend the language with a privacy monad to showcase how our library can be used in practical scenarios such as the implementation of differentially private programs, where the privacy guarantees depend on the sensitivity of user-defined functions. Our library, called Spar, is implemented in less than 500 lines of code. 
    more » « less
  2. Computations in physical simulation, computer graphics, and probabilistic inference often require the differentiation of discontinuous processes due to contact, occlusion, and changes at a point in time. Popular differentiable programming languages, such as PyTorch and JAX, ignore discontinuities during differentiation. This is incorrect forparametric discontinuities—conditionals containing at least one real-valued parameter and at least one variable of integration. We introduce Potto, the first differentiable first-order programming language to soundly differentiate parametric discontinuities. We present a denotational semantics for programs and program derivatives and show the two accord. We describe the implementation of Potto, which enables separate compilation of programs. Our prototype implementation overcomes previous compile-time bottlenecks achieving an 88.1x and 441.2x speed up in compile time and a 2.5x and 7.9x speed up in runtime, respectively, on two increasingly large image stylization benchmarks. We showcase Potto by implementing a prototype differentiable renderer with separately compiled shaders. 
    more » « less
  3. null (Ed.)
    The need for fail-slow fault tolerance in modern distributed systems is highlighted by the increasingly reported fail-slow hardware/software components that lead to poor performance system-wide. We argue that fail-slow fault tolerance not only needs new distributed protocol designs, but also desires programming support for implementing and verifying fail-slow fault-tolerant code. Our observation is that the inability of tolerating fail-slow faults in existing distributed systems is often rooted in the implementations and is difficult to understand and debug. We designed the Dependably Fast Library (DepFast) for implementing fail-slow tolerant distributed systems. DepFast provides expressive interfaces for taking control of possible fail-slow points in the program to prevent unexpected slowness propagation once and for all. We use DepFast to implement a distributed replicated state machine (RSM) and show that it can tolerate various types of fail-slow faults that affect existing RSM implementations. 
    more » « less
  4. Though conditionals are an integral component of programming, providing an easy means of creating conditionals remains a challenge for programming-by-demonstration (PBD) systems for task automation. We hypothesize that a promising method for implementing conditionals in such systems is to incorporate the use of verbal instructions. Verbal instructions supplied concurrently with demonstrations have been shown to improve the generalizability of PBD. However, the challenge of supporting conditional creation using this multi-modal approach has not been addressed. In this extended abstract, we present our study on understanding how end users describe conditionals in natural language for mobile app tasks. We conducted a formative study of 56 participants asking them to verbally describe conditionals in different settings for 9 sample tasks and to invent conditional tasks. Participant responses were analyzed using open coding and revealed that, in the context of mobile apps, end users often omit desired else statements when explaining conditionals, sometimes use ambiguous concepts in expressing conditionals, and often desire to implement complex conditionals. Based on these findings, we discuss the implications for designing a multimodal PBD interface to support the creation of conditionals. 
    more » « less
  5. Data-intensive applications in diverse domains, including video streaming, gaming, and health monitoring, increasingly require that mobile devices directly share data with each other. However, developing distributed data sharing functionality introduces low-level, brittle, and hard-to-maintain code into the mobile codebase. To reconcile the goals of programming convenience and performance efficiency, we present a novel middleware framework that enhances the Android platform's component model to support seamless and efficient inter-device data sharing. Our framework provides a familiar programming interface that extends the ubiquitous Android Inter-Component Communication (ICC), thus lowering the learning curve. Unlike middleware platforms based on the RPC paradigm, our programming abstractions require that mobile application developers think through and express explicitly data transmission patterns, thus treating latency as a first-class design concern. Our performance evaluation shows that using our framework incurs little performance overhead, comparable to that of custom-built implementations. By providing reusable programming abstractions that preserve component encapsulation, our framework enables Android devices to efficiently share data at the component level, providing powerful building blocks for the development of emerging distributed mobile applications. 
    more » « less