Abstract Manganese‐based materials are essential for developing safe, cost‐effective, and environmentally sustainable rechargeable batteries, which are critical for advancing clean energy technologies. However, the high spin state of the Mn cation triggers a pronounced Jahn–Teller effect and phase transformations during cycling, leading to structural instability and reduced electrochemical performance of the Mn‐based cathodes. This review provides a fundamental understanding of the Jahn–Teller effect, highlights recent strategies to mitigate the high spin state of Mn, and offers insights into future research directions aimed at overcoming the Jahn–Teller effect to enhance the performance of next‐generation Mn‐based cathodes for rechargeable batteries. 
                        more » 
                        « less   
                    This content will become publicly available on April 23, 2026
                            
                            Advancing Mn-Based Li-Ion Battery Cathodes via a Partially Cation-Disordered Zigzag-Type Li–Nb–Mn–O Framework
                        
                    
    
            Mn-based Li-ion battery cathodes encompass a great variety of materials structures. Decades of research effort have proven that developing a Mn-based structure featuring a high redox activity, stable cycling, and cost-effectiveness is a longstanding challenge. Motivated by such a need and inspired by the structural diversity of Mn-based cathodes, we develop a partially cation-disordered lithium niobium manganese oxide with a zigzag structure, filling the knowledge gap between zigzag-ordered and fully disordered Li–Mn-based oxides. Electrochemically, the partially disordered cathode greatly unlocks the redox activity of the zigzag lattice and maintains the cycling stability. Mechanism-wise, the partial disordering suppresses the disproportionation reaction of Mn(III) and facilitates a disordered λ-MnO2–tetragonal cation-disordered rock salt structural transformation. The work suggests the substantial opportunity of using partial disordering as the key strategy to revive locked-up redox activities and realize new energy storage mechanisms, for the pursuit of high-performance cost-effective battery materials. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2350193
- PAR ID:
- 10611135
- Publisher / Repository:
- Amercian Chemical Society
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- Volume:
- 147
- Issue:
- 16
- ISSN:
- 0002-7863
- Page Range / eLocation ID:
- 13437 to 13446
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Both electronic and ionic conductivities are of high importance to the performance of anode materials for Li-ion batteries. Many large capacity anode materials (such as Ge) do not have sufficiently high electronic and ionic conductivities required for high-rate cycling. Here, we report a novel ternary compound, copper germanium phosphide (CuGe 2 P 3 ), as a high-rate anode. Being synthesized via a facile and scalable mechanochemistry method, CuGe 2 P 3 has a cation-disordered sphalerite structure and offers higher ionic and electronic conductivities and better tolerance to volume change during cycling than Ge, as confirmed by first principles calculations and experimental characterization, including high-resolution synchrotron X-ray diffraction, HRTEM, SAED, XPS and Raman spectroscopy. Furthermore, the results suggest that CuGe 2 P 3 has a reversible Li-storage mechanism of conversion reaction. When composited with graphite by virtue of a two-stage ball-milling process, the yolk–shell structure of the amorphous carbon-coated CuGe 2 P 3 nanocomposite (CuGe 2 P 3 /C@Graphene) delivers a high initial coulombic efficiency (91%), a superior cycling stability (1312 mA h g −1 capacity after 600 cycles at 0.2 A g −1 and 876 mA h g −1 capacity after 1600 cycles at 2 A g −1 ), and an excellent rate capability (386 mA h g −1 capacity at 30 A g −1 ), surpassing most Ge-based anodes reported to date. Moreover, a series of cation-disordered new phases in the Cu(Zn)–Ge–P family with various cation ratios offer similar Li-storage properties, achieving high reversible capacities with high initial coulombic efficiencies and desirable redox chemistry with improved safety.more » « less
- 
            Cation‐disordered rock salts (DRXs) are well known for their potential to realize the goal of achieving scalable Ni‐ and Co‐free high‐energy‐density Li‐ion batteries. Unlike in most cathode materials, the disordered cation distribution may lead to more factors that control the electrochemistry of DRXs. An important variable that is not emphasized by research community is regarding whether a DRX exists in a more thermodynamically stable form or a more metastable form. Moreover, within the scope of metastable DRXs, over‐stoichiometric DRXs, which allow relaxation of the site balance constraint of a rock salt structure, are particularly underexplored. In this work, these findings are reported in locating a generally applicable approach to “metastabilize” thermodynamically stable Mn‐based DRXs to metastable ones by introducing Li over‐stoichiometry. The over‐stoichiometric metastabilization greatly stimulates more redox activities, enables better reversibility of Li deintercalation/intercalation, and changes the energy storage mechanism. The metastabilized DRXs can be transformed back to the thermodynamically stable form, which also reverts the electrochemical properties, further contrasting the two categories of DRXs. This work enriches the structural and compositional space of DRX families and adds new pathways for rationally tuning the properties of DRX cathodes.more » « less
- 
            Cost-effective production of low cobalt Li-ion battery (LIB) cathode materials is of great importance to the electric vehicle (EV) industry to achieve a zero-carbon economy. Among the various low cobalt cathodes, Ni-rich lithium nickel cobalt manganese oxide (NCM/NMC)-based layered materials are commonly used in EVs and are attracting more attention of the scientific community due to their high specific capacity and energy density. Various synthesis routes are already established to produce Ni-rich NCM cathodes with uniform particle size distribution and high tap density. Continuous production of highly pure Ni-rich cathode materials with uniformity in inter/intra-particle compositional distribution is critically required. On the other hand, cation mixing, particle cracking, and parasitic side reactions at higher voltage and temperature are some of the primary challenges of working with Ni-rich NCM cathodes. During the past five years, several advanced modification strategies such as coating, doping, core–shell, gradient structure and single crystal growth have been explored to improve the NCM cathode performance in terms of specific capacity, rate-capability and cycling stability. The scientific advancements in the field of Ni-rich NCM cathodes in terms of manufacturing processes, material challenges, modification techniques, and also the future research direction of LIB research are critically reviewed in this article.more » « less
- 
            The development of low-cost, high-performance anode materials for Li-ion batteries (LIBs) is imperative to meet the ever-increasing demands for advanced power sources. Here we report our findings on the design, synthesis, and characterization of a new cation-disordered ZnSiP 2 anode. When tested in LIBs, the disordered phase of ZnSiP 2 demonstrates faster reaction kinetics and higher energy efficiency than the cation-ordered phase of ZnSiP 2 . The superior performance is attributed to the greater electronic and ionic conductivity and better tolerance against volume variation during cycling, as confirmed by theoretical calculations and experimental measurements. Moreover, the cation-disordered ZnSiP 2 /C composite exhibits excellent cycle stability and superior rate capability. The performance surpasses all reported multi-phase anodes studied. Further, a number of the cation-disordered phases in the Zn(Cu)–Si–P family with a wide range of cation ratios show similar performance, achieving large specific capacities and high first-cycle coulombic efficiency while maintaining desirable working potentials for enhanced safety.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
