Abstract Bursty star formation—a key prediction for high-redshift galaxies from cosmological simulations explicitly resolving stellar feedback in the interstellar medium—has recently been observed to prevail among galaxies at redshiftz≳ 6. Line intensity mapping (LIM) of the 158μm [Cii] line as a star formation rate (SFR) indicator offers unique opportunities to tomographically constrain cosmic star formation at high redshift, in a way complementary to observations of individually detected galaxies. To understand the effects of bursty star formation on [Cii] LIM, which have remained unexplored in previous studies, we present an analytic modeling framework for high-zgalaxy formation and [Cii] LIM signals that accounts for bursty star formation histories induced by delayed supernova feedback. We use it to explore and characterize how bursty star formation can impact and thus complicate the interpretation of the [Cii] luminosity function and power spectrum. Our simple analytic model indicates that bursty star formation mainly affects low-mass galaxies by boosting their average SFR and [Cii] luminosity, and in the [Cii] power spectrum it can create a substantial excess in the large-scale clustering term. This distortion results in a power spectrum shape that cannot be explained by invoking a mass-independent logarithmic scatter. We conclude that burstiness must be accounted for when modeling and analyzing [Cii] data sets from the early Universe, and that in the extreme, the signature of burstiness may be detectable with first-generation experiments such as TIME, CONCERTO, and CCAT-DSS.
more »
« less
This content will become publicly available on April 1, 2026
Constraining bursty star formation histories with galaxy UV and H α luminosity functions and clustering
Abstract The observed prevalence of galaxies exhibiting bursty star formation histories (SFHs) atz≳ 6 has created new challenges and opportunities for understanding their formation pathways. The degenerate effects of the efficiency and burstiness of star formation on the observed UV luminosity function are separable by galaxy clustering. However, quantifying the timescales of burstiness requires more than just the continuum UV measurements. Here we develop a flexible semi-analytic framework for modeling both the amplitude of star formation rate (SFR) variations and their temporal correlation, from which the luminosity function and clustering can be derived for SFR indicators tracing different characteristic timescales (e.g., UV continuum and Hα luminosities). Based on this framework, we study the prospect of using galaxy summary statistics to distinguish models where SFR fluctuations are prescribed by different power spectral density (PSD) forms. Using the Fisher matrix approach, we forecast the constraints on parameters in our PSD-based model that can be extracted from mock JWST observations of the UV and Hαluminosity functions and clustering bias factors atz∼ 6. If potential confusion due to e.g., dust attenuation and stellar population effects can be properly quantified, these results imply the possibility of probing the burstiness of high-zgalaxies with one-point and two-point statistics and highlight the benefits of combining long-term and short-term SFR tracers. Our flexible framework can be readily extended to characterize the SFH of high-redshift galaxies with a wider range of observational diagnostics.
more »
« less
- PAR ID:
- 10611356
- Publisher / Repository:
- JCAP
- Date Published:
- Journal Name:
- Journal of Cosmology and Astroparticle Physics
- Volume:
- 2025
- Issue:
- 04
- ISSN:
- 1475-7516
- Page Range / eLocation ID:
- 034
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We use a well-motivated galaxy formation framework to predict stellar masses, star formation rates (SFR), and ultraviolet (UV) luminosities of galaxy populations at redshifts $$z\in 5-16$$, taking into account stochasticity of SFR in a controlled manner. We demonstrate that the model can match observational estimates of UV luminosity functions (LFs) at $5<10$ with a modest level of SFR stochasticity, resulting in the scatter of absolute UV luminosity at a given halo mass of $$\sigma_{M_{\rm UV}}\approx 0.75$$. To match the observed UV LFs at $$z\approx 11-13$$ and $$z\approx 16$$ the SFR stochasticity should increase so that $$\sigma_{M_{\rm UV}}\approx 1-1.3$$ and $$\approx 2$$, respectively. Model galaxies at $$z\approx 11-13$$ have stellar masses and SFRs in good agreement with existing measurements. The median fraction of the baryon budget that was converted into stars, $$f_\star$$, is only $$f_\star\approx 0.005-0.05$$, but a small fraction of galaxies at $z=16$ have $$f_\star>1$$ indicating that SFR stochasticity cannot be higher. We discuss several testable consequences of the increased SFR stochasticity at $z>10$. The increase of SFR stochasticity with increasing $$z$$, for example, prevents steepening of UV LF and even results in some flattening of UV LF at $$z\gtrsim 13$$. The median stellar ages of model galaxies at $$z\approx 11-16$$ are predicted to decrease from $$\approx 20-30$$ Myr for $$M_{\rm UV}\gtrsim -21$$ galaxies to $$\approx 5-10$$ Myr for brighter ones. Likewise, the scatter in median stellar age is predicted to decrease with increasing luminosity. The scatter in the ratio of star formation rates averaged over 10 and 100 Myr should increase with redshift. Fluctuations of ionizing flux should increase at $z>10$ resulting in the increasing scatter in the line fluxes and their ratios for the lines sensitive to ionization parameter.more » « less
-
ABSTRACT We present measurements of the dependence of the clustering amplitude of galaxies on their star formation rate (SFR) and stellar mass (M*) at 0.7 < z < 1.5 to assess the extent to which environment affects these properties. While these relations are well determined in the local Universe, they are much more poorly known at earlier times. For this analysis, we make use of the near-infrared HST WFC3 grism spectroscopic data in the five CANDELS fields obtained as part of the 3D-HST survey. We make projected two-point correlation function measurements using ∼6000 galaxies with accurate redshifts, M*, and H α luminosities. We find a strong dependence of clustering amplitude on H α luminosity and thus SFR. However, at fixed M*, the clustering dependence on H α luminosity is largely eliminated. We model the clustering of these galaxies within the halo occupation distribution framework using the conditional luminosity function model and the newly developed conditional stellar mass and H α luminosity distribution model. These show that galaxies with higher SFRs tend to live in higher mass haloes, but this is largely driven by the relationship between SFR and M*. Finally, we show that the small residual correlation between clustering amplitude and H α luminosity at fixed M* is likely being driven by a broadening of the SFR–M* relationship for satellite galaxies.more » « less
-
The [C II ] 158 μ m line is one of the strongest IR emission lines, which has been shown to trace the star formation rate (SFR) of galaxies in the nearby Universe, and up to z ∼ 2. Whether this is also the case at higher redshift and in the early Universe remains debated. The ALPINE survey, which targeted 118 star-forming galaxies at 4.4 < z < 5.9, provides a new opportunity to examine this question with the first statistical dataset. Using the ALPINE data and earlier measurements from the literature, we examine the relation between the [C II ] luminosity and the SFR over the entire redshift range from z ∼ 4 − 8. ALPINE galaxies, which are both detected in [C II ] and in dust continuum, show good agreement with the local L ([CII])–SFR relation. Galaxies undetected in the continuum by ALMA are found to be over-luminous in [C II ] when the UV SFR is used. After accounting for dust-obscured star formation, by an amount of SFR(IR) ≈ SFR(UV) on average, which results from two different stacking methods and SED fitting, the ALPINE galaxies show an L ([CII])–SFR relation comparable to the local one. When [C II ] non-detections are taken into account, the slope may be marginally steeper at high- z , although this is still somewhat uncertain. When compared homogeneously, the z > 6 [C II ] measurements (detections and upper limits) do not behave very differently to the z ∼ 4 − 6 data. We find a weak dependence of L ([CII])/SFR on the Ly α equivalent width. Finally, we find that the ratio L ([CII])/ L IR ∼ (1 − 3) × 10 −3 for the ALPINE sources, comparable to that of “normal” galaxies at lower redshift. Our analysis, which includes the largest sample (∼150 galaxies) of [C II ] measurements at z > 4 available so far, suggests no or little evolution of the [C II ]–SFR relation over the last 13 Gyr of cosmic time.more » « less
-
null (Ed.)ABSTRACT Understanding the rate at which stars form is central to studies of galaxy formation. Observationally, the star formation rates (SFRs) of galaxies are measured using the luminosity in different frequency bands, often under the assumption of a time-steady SFR in the recent past. We use star formation histories (SFHs) extracted from cosmological simulations of star-forming galaxies from the FIRE project to analyse the time-scales to which the H α and far-ultraviolet (FUV) continuum SFR indicators are sensitive. In these simulations, the SFRs are highly time variable for all galaxies at high redshift, and continue to be bursty to z = 0 in dwarf galaxies. When FIRE SFHs are partitioned into their bursty and time-steady phases, the best-fitting FUV time-scale fluctuates from its ∼10 Myr value when the SFR is time-steady to ≳100 Myr immediately following particularly extreme bursts of star formation during the bursty phase. On the other hand, the best-fitting averaging time-scale for H α is generally insensitive to the SFR variability in the FIRE simulations and remains ∼5 Myr at all times. These time-scales are shorter than the 100 and 10 Myr time-scales sometimes assumed in the literature for FUV and H α, respectively, because while the FUV emission persists for stellar populations older than 100 Myr, the time-dependent luminosities are strongly dominated by younger stars. Our results confirm that the ratio of SFRs inferred using H α versus FUV can be used to probe the burstiness of star formation in galaxies.more » « less
An official website of the United States government
