skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Overexpression of RuBisCO form I and II genes in Rhodopseudomonas palustris TIE-1 augments polyhydroxyalkanoate production heterotrophically and autotrophically
ABSTRACT With the rising demand for sustainable renewable resources, microorganisms capable of producing bioproducts such as bioplastics are attractive. While many bioproduction systems are well-studied in model organisms, investigating non-model organisms is essential to expand the field and utilize metabolically versatile strains. This investigation centers onRhodopseudomonas palustrisTIE-1, a purple non-sulfur bacterium capable of producing bioplastics. To increase bioplastic production, genes encoding the putative regulatory protein PhaR and the depolymerase PhaZ of the polyhydroxyalkanoate (PHA) biosynthesis pathway were deleted. Genes associated with pathways that might compete with PHA production, specifically those linked to glycogen production and nitrogen fixation, were deleted. Additionally, RuBisCO form I and II genes were integrated into TIE-1’s genome by a phage integration system, developed in this study. Our results show that deletion ofphaRincreases PHA production when TIE-1 is grown photoheterotrophically with butyrate and ammonium chloride (NH4Cl). Mutants unable to produce glycogen or fix nitrogen show increased PHA production under photoautotrophic growth with hydrogen and NH4Cl. The most significant increase in PHA production was observed when RuBisCO form I and form I & II genes were overexpressed, five times under photoheterotrophy with butyrate, two times with hydrogen and NH4Cl, and two times under photoelectrotrophic growth with N2. In summary, inserting copies of RuBisCO genes into the TIE-1 genome is a more effective strategy than deleting competing pathways to increase PHA production in TIE-1. The successful use of the phage integration system opens numerous opportunities for synthetic biology in TIE-1.IMPORTANCEOur planet has been burdened by pollution resulting from the extensive use of petroleum-derived plastics for the last few decades. Since the discovery of biodegradable plastic alternatives, concerted efforts have been made to enhance their bioproduction. The versatile microorganismRhodopseudomonas palustrisTIE-1 (TIE-1) stands out as a promising candidate for bioplastic synthesis, owing to its ability to use multiple electron sources, fix the greenhouse gas CO2, and use light as an energy source. Two categories of strains were meticulously designed from the TIE-1 wild-type to augment the production of polyhydroxyalkanoate (PHA), one such bioplastic produced. The first group includes mutants carrying a deletion of thephaRorphaZgenes in the PHA pathway, and those lacking potential competitive carbon and energy sinks to the PHA pathway (namely, glycogen biosynthesis and nitrogen fixation). The second group comprises TIE-1 strains that overexpress RuBisCO form I or form I & II genes inserted via a phage integration system. By studying numerous metabolic mutants and overexpression strains, we conclude that genetic modifications in the environmental microbe TIE-1 can improve PHA production. When combined with other approaches (such as reactor design, use of microbial consortia, and different feedstocks), genetic and metabolic manipulations of purple nonsulfur bacteria like TIE-1 are essential for replacing petroleum-derived plastics with biodegradable plastics like PHA.  more » « less
Award ID(s):
2300081 2021822
PAR ID:
10611383
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Reguera, Gemma
Publisher / Repository:
American Society for Microbiology
Date Published:
Journal Name:
Applied and Environmental Microbiology
Volume:
90
Issue:
9
ISSN:
0099-2240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Petroleum‐based plastics levy significant environmental and economic costs that can be alleviated with sustainably sourced, biodegradable, and bio‐based polymers such as polyhydroxyalkanoates (PHAs). However, industrial‐scale production of PHAs faces barriers stemming from insufficient product yields and high costs. To address these challenges, we must look beyond the current suite of microbes for PHA production and investigate non‐model organisms with versatile metabolisms. In that vein, we assessed PHA production by the photosynthetic purple non‐sulfur bacteria (PNSB)Rhodomicrobium vannieliiandRhodomicrobium udaipurense.We show that both species accumulate PHA across photo‐heterotrophic, photo‐hydrogenotrophic, photo‐ferrotrophic, and photo‐electrotrophic growth conditions, with either ammonium chloride (NH4Cl) or dinitrogen gas (N2) as nitrogen sources. Our data indicate that nitrogen source plays a significant role in dictating PHA synthesis, with N2fixation promoting PHA production during photoheterotrophy and photoelectrotrophy but inhibiting production during photohydrogenotrophy and photoferrotrophy. We observed the highest PHA titres (up to 44.08 mg/L, or 43.61% cell dry weight) when cells were grown photoheterotrophically on sodium butyrate with N2, while production was at its lowest during photoelectrotrophy (as low as 0.04 mg/L, or 0.16% cell dry weight). We also find that photohydrogenotrophically grown cells supplemented with NH4Cl exhibit the highest electron yields – up to 58.89% – while photoheterotrophy demonstrated the lowest (0.27%–1.39%). Finally, we highlight superior electron conversion and PHA production compared to a related PNSB,Rhodopseudomonas palustrisTIE‐1. This study illustrates the value of studying non‐model organisms likeRhodomicrobiumfor sustainable PHA production and indicates future directions for exploring PNSB metabolisms. 
    more » « less
  2. Abstract Anthropogenic carbon dioxide (CO2) release in the atmosphere from fossil fuel combustion has inspired scientists to study CO2to biofuel conversion. Oxygenic phototrophs such as cyanobacteria have been used to produce biofuels using CO2. However, oxygen generation during oxygenic photosynthesis adversely affects biofuel production efficiency. To producen-butanol (biofuel) from CO2, here we introduce ann-butanol biosynthesis pathway into an anoxygenic (non-oxygen evolving) photoautotroph,Rhodopseudomonas palustrisTIE-1 (TIE-1). Using different carbon, nitrogen, and electron sources, we achieven-butanol production in wild-type TIE-1 and mutants lacking electron-consuming (nitrogen-fixing) or acetyl-CoA-consuming (polyhydroxybutyrate and glycogen synthesis) pathways. The mutant lacking the nitrogen-fixing pathway produce the highestn-butanol. Coupled with novel hybrid bioelectrochemical platforms, this mutant producesn-butanol using CO2, solar panel-generated electricity, and light with high electrical energy conversion efficiency. Overall, this approach showcases TIE-1 as an attractive microbial chassis for carbon-neutraln-butanol bioproduction using sustainable, renewable, and abundant resources. 
    more » « less
  3. Anthropogenic carbon dioxide (CO2) release in the atmosphere from fossil fuel combustion has inspired scientists to study CO2 to fuel conversion. Oxygenic phototrophs such as cyanobacteria have been used to produce biofuels using CO2. However, oxygen generation during oxygenic photosynthesis affects biofuel production efficiency. To produce n-butanol (biofuel) from CO2, here we introduced an n-butanol biosynthesis pathway into an anoxygenic (non-oxygen evolving) photoautotroph, Rhodopseudomonas palustris TIE-1 (TIE-1). Using different carbon, nitrogen, and electron sources, we achieved n-butanol production in wild-type TIE-1 and mutants lacking electron-consuming (nitrogen-fixing) or acetyl-CoA-consuming (polyhydroxybutyrate and glycogen synthesis) pathways. The mutant lacking the nitrogen-fixing pathway produced highest n-butanol. Coupled with novel hybrid bioelectrochemical platforms, this mutant produced nbutanol using CO2, solar panel-generated electricity, and light, with high electrical energy conversion efficiency. Overall, this approach showcases TIE-1 as an attractive microbial chassis for carbon-neutral n-butanol bioproduction using sustainable, renewable, and abundant resources. 
    more » « less
  4. Polyhydroxybutyrate (PHB) is a bio-based, biodegradable alternative to petroleum-based plastics. PHB production at industrial scales remains infeasible, in part due to insufficient yields and high costs. Addressing these challenges requires identifying novel biological chassis for PHB production and modifying known biological chassis to enhance production using sustainable, renewable inputs. Here, we take the former approach and present the first description of PHB production by two prosthecate photosynthetic purple non-sulfur bacteria (PNSB), Rhodomicrobium vannielii and Rhodomicrobium udaipurense. We show that both species produce PHB across photoheterotrophic, photoautotrophic, photoferrotrophic, and photoelectrotrophic growth conditions. Both species show the greatest PHB titers during photoheterotrophic growth on butyrate with dinitrogen gas as a nitrogen source (up to 44.08 mg/L), while photoelectrotrophic growth demonstrated the lowest titers (up to 0.13 mg/L). These titers are both greater (photoheterotrophy) and less (photoelectrotrophy) than those observed previously in a related PNSB, Rhodopseudomonas palustris TIE-1. On the other hand, we observe the highest electron yields during photoautotrophic growth with hydrogen gas or ferrous iron electron donors, and these electron yields were generally greater than those observed previously in TIE-1. These data suggest that non model organisms like Rhodomicrobium should be explored for sustainable PHB production and highlights utility in exploring novel biological chassis. 
    more » « less
  5. Abstract The Twin Falls, Idaho wastewater treatment plant (WWTP), currently operates solely to achieve regulatory permit compliance. Research was conducted to evaluate conversion of the WWTP to a water resource recovery facility (WRRF) and to assess the WRRF environmental sustainability; process configurations were evaluated to produce five resources—reclaimed water, biosolids, struvite, biogas, and bioplastics (polyhydroxyalkanoates, PHA). PHA production occurred using fermented dairy manure. State‐of‐the‐art biokinetic modeling, performed using Dynamita's SUMO process model, was coupled with environmental life cycle assessment to quantify environmental sustainability. Results indicate that electricity production via combined heat and power (CHP) was most important in achieving environmental sustainability; energy offset ranged from 43% to 60%, thereby reducing demand for external fossil fuel‐based energy. While struvite production helps maintain a resilient enhanced biological phosphorus removal (EBPR) process, MgO2production exhibits negative environmental impacts; integration with CHP negates the adverse consequences. Integrating dairy manure to produce bioplastics diversifies the resource recovery portfolio while maintaining WRRF environmental sustainability; pilot‐scale evaluations demonstrated that WRRF effluent quality was not affected by the addition of effluent from PHA production. Collectively, results show that a WRRF integrating dairy manure can yield a diverse portfolio of products while operating in an environmentally sustainable manner. Practitioner pointsWastewater carbon recovery via anaerobic digestion with combined heat/power production significantly reduces water resource recovery facility (WRRF) environmental emissions.Wastewater phosphorus recovery is of value; however, struvite production exhibits negative environmental impacts due to MgO2production emissions.Bioplastics production on imported organic‐rich agri‐food waste can diversify the WRRF portfolio.Dairy manure can be successfully integrated into a WRRF for bioplastics production without compromising WRRF performance.Diversifying the WRRF products portfolio is a strategy to maximize resource recovery from wastewater while concurrently achieving environmental sustainability. 
    more » « less