skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Combining Gas Exchange and Rapid Quenching of Leaf Tissue for Mass Spectrometry Analysis Directly in Gas Exchange Cuvette
Award ID(s):
2030337
PAR ID:
10611397
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer US
Date Published:
ISBN:
978-1071638019
Page Range / eLocation ID:
209 to 219
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. OBJECTIVES/GOALS: For patients suffering from respiratory failure there are limited options to support gas exchange aside from mechanical ventilation. Our goal is to design, investigate, and refine a novel device for extrapulmonary gas exchange via peritoneal perfusion with perfluorocarbons (PFC) in an animal model. METHODS/STUDY POPULATION: Hypoxic respiratory failure will be modeled using 50 kg swine mechanically ventilated with subatmospheric (10-12%) oxygen. Through a midline laparotomy, two cannulas, one for inflow and one for outflow, will be placed into the peritoneal space. After abdominal closure, the cannulas will be connected to a device capable of draining, oxygenating, regulating temperature, filtering, and pumping perfluorodecalin at a rate of 3-4 liters per minute. During induced hypoxia, the physiologic response to PFC circulation through the peritoneal space will be monitored with invasive (e.g. arterial and venous blood gases) and non-invasive measurements (e.g. pulse oximetry). RESULTS/ANTICIPATED RESULTS: We anticipate that the initiation of oxygenated perfluorocarbons perfusion through the peritoneal space during induced hypoxia will create an increase in hemoglobin oxygen saturation and partial pressure of oxygen in arterial blood. As we expect gas exchange to be occurring in the microvascular beds of the peritoneal membrane, we expect to observe an increase in the venous blood oxygen content sampled from the inferior vena cava. Using other invasive hemodynamic measures (e.g. cardiac output) and blood samples taken from multiple venous sites, a quantifiable rate of oxygen delivery will be calculable. DISCUSSION/SIGNIFICANCE: Peritoneal perfluorocarbon perfusion, if able to deliver significant amounts of oxygen, would provide a potentially lifesaving therapy for patients in respiratory failure who are unable to be supported with mechanical ventilation alone, and are not candidates for extracorporeal membrane oxygenation. 
    more » « less
  2. The rates and mechanisms of chemical reactions that occur at a phase boundary often differ considerably from chemical behavior in bulk solution, but remain difficult to quantify. Ion–neutral interactions are one such class of chemical reactions whose behavior during the nascent stages of solvation differs from bulk solution while occupying critical roles in aerosol formation, atmospheric chemistry, and gas-phase ion separations. Through a gas-phase ion separation technique utilizing a counter-current flow of deuterated vapor, we quantify the degree of hydrogen–deuterium exchange (HDX) and ion–neutral clustering on a series of model chemical systems ( i.e. amino acids). By simultaneously quantifying the degree of vapor association and HDX, the effects of cluster formation on reaction kinetics are realized. These results imply that cluster formation cannot be ignored when modeling complex nucleation processes and biopolymer structural dynamics. 
    more » « less
  3. The air–sea exchange of carbon dioxide (CO2) on a global scale is a key factor in understanding climate change and predicting its effects. The magnitude of sea spray’s contribution to this flux is currently highly uncertain. Constraining CO2’s diffusion in sea spray droplets is important for reducing error margins in global estimates of oceanic CO2 uptake and release. The timescale for CO2 gas diffusion within sea spray is known to be shorter than the timescales for the droplets’ physical changes to take place while aloft. However, the rate of aqueous carbonate reactions relative to these timescales has not been assessed. This study investigates the timescales of droplet physical changes to those of chemical transformations across the H2CO3/HCO3−/CO32− sequence. We found that physical timescales are rate limiting and that evaporation drives carbonate species into gaseous CO2, promoting the production and evasion of CO2 from sea spray droplets. This has important implications for carbon cycling and feedback in the surface ocean. 
    more » « less
  4. High-altitude life poses physiological challenges to all animals due to decreased environmental oxygen (O2) availability (hypoxia) and cold. Supporting high metabolic rates and body temperatures with limited O2is challenging. Many birds, however, thrive at high altitudes. The O2-transport cascade describes the pathway involved in moving O2from the environment to the tissues encompassing: (i) ventilation, (ii) pulmonary O2diffusion, (iii) circulation, (iv) tissue O2diffusion, and (v) mitochondrial O2use for ATP production. Shared avian traits such as rigid lungs with cross-current gas exchange and unidirectional airflow aid in O2acquisition and transport in all birds. Many high-altitude birds, however, have evolved enhancements to some or all steps in the cascade. In this review, we summarize the current literature on gas exchange and O2transport in high-altitude birds, providing an overview of the O2-transport cascade that principally draws on the literature from high-altitude waterfowl, the most well-studied group of high-altitude birds. We close by discussing two important avenues for future research: distinguishing between the influences of plasticity and evolution and investigating whether the morphological and physiological differences discussed contribute to enhanced locomotor or thermogenic performance, a potential critical link to fitness. This article is part of the theme issue ‘The biology of the avian respiratory system’. 
    more » « less
  5. null (Ed.)