Abstract In social science, formal and quantitative models, ranging from ones that describe economic growth to collective action, are used to formulate mechanistic explanations of the observed phenomena, provide predictions, and uncover new research questions. Here, we demonstrate the use of a machine learning system to aid the discovery of symbolic models that capture non-linear and dynamical relationships in social science datasets. By extending neuro-symbolic methods to find compact functions and differential equations in noisy and longitudinal data, we show that our system can be used to discover interpretable models from real-world data in economics and sociology. Augmenting existing workflows with symbolic regression can help uncover novel relationships and explore counterfactual models during the scientific process. We propose that this AI-assisted framework can bridge parametric and non-parametric models commonly employed in social science research by systematically exploring the space of non-linear models and enabling fine-grained control over expressivity and interpretability.
more »
« less
Parametric matrix models
Abstract We present a general class of machine learning algorithms called parametric matrix models. In contrast with most existing machine learning models that imitate the biology of neurons, parametric matrix models use matrix equations that emulate physical systems. Similar to how physics problems are usually solved, parametric matrix models learn the governing equations that lead to the desired outputs. Parametric matrix models can be efficiently trained from empirical data, and the equations may use algebraic, differential, or integral relations. While originally designed for scientific computing, we prove that parametric matrix models are universal function approximators that can be applied to general machine learning problems. After introducing the underlying theory, we apply parametric matrix models to a series of different challenges that show their performance for a wide range of problems. For all the challenges tested here, parametric matrix models produce accurate results within an efficient and interpretable computational framework that allows for input feature extrapolation.
more »
« less
- Award ID(s):
- 2310020
- PAR ID:
- 10611417
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many areas of machine learning and science involve large linear algebra problems, such as eigendecompositions, solving linear systems, computing matrix exponentials, and trace estimation. The matrices involved often have Kronecker, convolutional, block diagonal, sum, or product structure. In this paper, we propose a simple but general framework for large-scale linear algebra problems in machine learning, named CoLA (Compositional Linear Algebra). By combining a linear operator abstraction with compositional dispatch rules, CoLA automatically constructs memory and runtime efficient numerical algorithms. Moreover, CoLA provides memory efficient automatic differentiation, low precision computation, and GPU acceleration in both JAX and PyTorch, while also accommodating new objects, operations, and rules in downstream packages via multiple dispatch. CoLA can accelerate many algebraic operations, while making it easy to prototype matrix structures and algorithms, providing an appealing drop-in tool for virtually any computational effort that requires linear algebra. We showcase its efficacy across a broad range of applications, including partial differential equations, Gaussian processes, equivariant model construction, and unsupervised learning.more » « less
-
Many areas of machine learning and science involve large linear algebra problems, such as eigendecompositions, solving linear systems, computing matrix exponentials, and trace estimation. The matrices involved often have Kronecker, convolutional, block diagonal, sum, or product structure. In this paper, we propose a simple but general framework for large-scale linear algebra problems in machine learning, named CoLA (Compositional Linear Algebra). By combining a linear operator abstraction with compositional dispatch rules, CoLA automatically constructs memory and runtime efficient numerical algorithms. Moreover, CoLA provides memory efficient automatic differentiation, low precision computation, and GPU acceleration in both JAX and PyTorch, while also accommodating new objects, operations, and rules in downstream packages via multiple dispatch. CoLA can accelerate many algebraic operations, while making it easy to prototype matrix structures and algorithms, providing an appealing drop-in tool for virtually any computational effort that requires linear algebra. We showcase its efficacy across a broad range of applications, including partial differential equations, Gaussian processes, equivariant model construction, and unsupervised learning.more » « less
-
The advent of artificial intelligence and machine learning has led to significant technological and scientific progress, but also to new challenges. Partial differential equations, usually used to model systems in the sciences, have shown to be useful tools in a variety of tasks in the data sciences, be it just as physical models to describe physical data, as more general models to replace or construct artificial neural networks, or as analytical tools to analyse stochastic processes appearing in the training of machine-learning models. This article acts as an introduction of a theme issue covering synergies and intersections of partial differential equations and data science. We briefly review some aspects of these synergies and intersections in this article and end with an editorial foreword to the issue. This article is part of the theme issue ‘Partial differential equations in data science’.more » « less
-
Data-driven discovery of chemotactic migration of bacteria via coordinate-invariant machine learningAbstract BackgroundE. colichemotactic motion in the presence of a chemonutrient field can be studied using wet laboratory experiments or macroscale-level partial differential equations (PDEs) (among others). Bridging experimental measurements and chemotactic Partial Differential Equations requires knowledge of the evolution of all underlying fields, initial and boundary conditions, and often necessitates strong assumptions. In this work, we propose machine learning approaches, along with ideas from the Whitney and Takens embedding theorems, to circumvent these challenges. ResultsMachine learning approaches for identifying underlying PDEs were (a) validated through the use of simulation data from established continuum models and (b) used to infer chemotactic PDEs from experimental data. Such data-driven models were surrogates either for the entire chemotactic PDE right-hand-side (black box models), or, in a more targeted fashion, just for the chemotactic term (gray box models). Furthermore, it was demonstrated that a short history of bacterial density may compensate for the missing measurements of the field of chemonutrient concentration. In fact, given reasonable conditions, such a short history of bacterial density measurements could even be used toinferchemonutrient concentration. ConclusionData-driven PDEs are an important modeling tool when studying Chemotaxis at the macroscale, as they can learn bacterial motility from various data sources, fidelities (here, computational models, experiments) or coordinate systems. The resulting data-driven PDEs can then be simulated to reproduce/predict computational or experimental bacterial density profile data independent of the coordinate system, approximate meaningful parameters or functional terms, and even possibly estimate the underlying (unmeasured) chemonutrient field evolution.more » « less
An official website of the United States government
