skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhanced metamorphic CO2 release on the Proterozoic Earth
Rock metamorphism releases substantial CO2 over geologic timescales (>1 My), potentially driving long-term planetary climate trends. The nature of carbonate sediments and crustal thermal regimes exert a strong control on the efficiency of metamorphic CO2 release; thus, it is likely that metamorphic CO2 degassing has not been constant throughout time. The Proterozoic Earth was characterized by a high proportion of dolomite-bearing mixed carbonate-silicate rocks and hotter crustal regimes, both of which would be expected to enhance metamorphic decarbonation. Thermodynamic phase equilibria modeling predicts that the metamorphic carbon flux was likely ~1.7 times greater in the Mesoproterozoic Era compared to the modern Earth. Analytical and numerical approaches (the carbon cycle model PreCOSCIOUS) are used to estimate the impact this would have on Proterozoic carbon cycling and global atmospheric compositions. This enhanced metamorphic CO2 release alone could increase pCO2 by a factor of four or more when compared to modern degassing rates, contributing to a stronger greenhouse effect and warmer global temperatures during the expansion of life on the early Earth.  more » « less
Award ID(s):
2247049
PAR ID:
10611471
Author(s) / Creator(s):
;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
40
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Estimates of sedimentary organic carbon burial fluxes based on inventory and isotope mass balance methods have been divergent. A new calculation of the isotope mass balance using a revised assessment of the inputs to the ocean-atmosphere system resolves the apparent discrepancy. Inputs include weathering of carbonate and old kerogen, geogenic methane oxidation, and volcanic and metamorphic degassing. Volcanic and metamorphic degassing comprise ≈23% of the total C input. Inputs from isotopically lightOCpetroandCH4-geodrive the mean δ13C of the input to =−8.0 ± 1.9‰, notably lower than the commonly assumed volcanic degassing value. The isotope mass balance model yields a modern burial flux =15.9 ± 6.6 Tmol y−1. The impact of the mid-Miocene Climatic Optimum isotope anomaly is an integrated excess deposition ≈ 4.3 × 106Tmol between 18 and 11 Ma, which is both longer and larger than estimates for the total degassing by the Columbia River Basalt eruptions, implying a complex carbon system response to large eruptive events. Monte Carlo evaluation finds that late Cenozoic net growth of the carbonate reservoir is very likely while net growth of theCorgreservoir is less certain but more likely than not. At present, subduction does not appear to keep up with net sedimentation and the overall masses of sedimentary carbonate and organic carbon are likely increasing. Growth in the sedimentaryCorgreservoir implies oxidation of the surface environment and likely increases in atmospheric pO2
    more » « less
  2. The Wyoming Province of Laurentia, which hosts some of the oldest known crustal material on Earth including zircon 207Pb/206Pb ages up to 3.96 Ga in the Beartooth Mountains, Montana, has been subjected to multiple periods of orogenesis and burial from Proterozoic time to present. We present new zircon U-Pb geochronology and zircon (U-Th)/He thermochronology from Archean-Proterozoic metamorphic rocks exposed in the Bridger Range, Montana, to resolve details of their origins and reconstruct their deep-time tectonothermal history. Zircon U-Pb geochronology and cathodoluminescence imaging, paired with whole rock geochemistry and petrography, was obtained from four metamorphic samples including quartzofeldspathic and garnet-biotite gneisses proximal to the “Great Unconformity” (GU), where Archean-Proterozoic metamorphic rocks are unconformably overlain by ~7.5-9 km of compacted Phanerozoic strata. Single grain 207Pb/206Pb ages range from 4099 ± 44 Ma to 1776 ± 24 Ma, extending the age of known crustal material in the northern Wyoming Province into the Hadean and recording high-grade conditions during the Paleoproterozoic Great Falls/Big Sky orogeny. Zircon (U-Th)/He thermochronology from five metamorphic samples proximal to the GU record cooling ages ranging from 705 Ma to 10.3 Ma, reflecting the variable He diffusivity of individual zircon grains with a large range of radiation damage as proxied by effective uranium (eU) concentrations, which range from ~5 to ~3000 ppm. A negative correlation between cooling age and eU is observed across the five samples suggesting the zircon (U-Th)/He system is sensitive to Proterozoic through Miocene thermal perturbations. Ongoing thermal history modeling seeks to reconstruct the temperature-time histories of these metamorphic rocks, including testing whether this dataset is sensitive to thermal effects imparted by the rifting of Rodina and erosion related to Cryogenian glaciation (i.e., hypotheses related to formation of the GU), and the onset of modern, active extension. These datasets and models provide crucial new constraints on the obscured Proterozoic tectonic history of the northern Wyoming Province and have important implications for our understanding of the formation of early crustal material on Earth. 
    more » « less
  3. The Wyoming Province of Laurentia, which hosts some of the oldest known crustal material on Earth including zircon 207Pb/206Pb ages up to 3.96 Ga in the Beartooth Mountains, Montana, has been subjected to multiple periods of orogenesis and burial from Proterozoic time to present. We present new zircon U-Pb geochronology and zircon (U-Th)/He thermochronology from Archean-Proterozoic metamorphic rocks exposed in the Bridger Range, Montana, to resolve details of their origins and reconstruct their deep-time tectonothermal history. Zircon U-Pb geochronology and cathodoluminescence imaging, paired with whole rock geochemistry and petrography, was obtained from four metamorphic samples including quartzofeldspathic and garnet-biotite gneisses proximal to the “Great Unconformity” (GU), where Archean-Proterozoic metamorphic rocks are unconformably overlain by ~7.5-9 km of compacted Phanerozoic strata. Single grain 207Pb/206Pb ages range from 4099 ± 44 Ma to 1776 ± 24 Ma, extending the age of known crustal material in the northern Wyoming Province into the Hadean and recording high-grade conditions during the Paleoproterozoic Great Falls/Big Sky orogeny. Zircon (U-Th)/He thermochronology from five metamorphic samples proximal to the GU record cooling ages ranging from 705 Ma to 10.3 Ma, reflecting the variable He diffusivity of individual zircon grains with a large range of radiation damage as proxied by effective uranium (eU) concentrations, which range from ~5 to ~3000 ppm. A negative correlation between cooling age and eU is observed across the five samples suggesting the zircon (U-Th)/He system is sensitive to Proterozoic through Miocene thermal perturbations. Ongoing thermal history modeling seeks to reconstruct the temperature-time histories of these metamorphic rocks, including testing whether this dataset is sensitive to thermal effects imparted by the rifting of Rodina and erosion related to Cryogenian glaciation (i.e., hypotheses related to formation of the GU), and the onset of modern, active extension. These datasets and models provide crucial new constraints on the obscured Proterozoic tectonic history of the northern Wyoming Province and have important implications for our understanding of the formation of early crustal material on Earth. 
    more » « less
  4. Metamorphic decarbonation in magmatic arcs remains a challenge to impose in models of the geologic carbon cycle. Crustal reservoirs and metamorphic fluxes of carbon vary with depth in the crust, rock types and their stratigraphic succession, and through geologic time. When byproducts of metamorphic decarbonation (e.g., skarns) are exposed at Earth’s surface, they reveal a record of reactive transport of carbon dioxide (CO2). In this paper, we discuss the different modes of metamorphic decarbonation at multiple spatial and temporal scales and exemplify them through roof pendants of the Sierra Nevada batholith. We emphasize the utility of analogue models for metamorphic decarbonation to generate a range of decarbonation fluxes throughout the Cretaceous. Our model predicts that metamorphic CO2 fluxes from continental arcs during the Cretaceous were at least 2 times greater than the present cumulative CO2 flux from volcanoes, agreeing with previous estimates and further suggesting that metamorphic decarbonation was a principal driver of the Cretaceous hothouse climate. We lastly argue that our modeling framework can be used to quantify decarbonation fluxes throughout the Phanerozoic and thereby refine Earth systems models for paleoclimate reconstruction. 
    more » « less
  5. Abstract The geologic carbon cycle plays a fundamental role in controlling Earth's climate and habitability. For billions of years, stabilizing feedbacks inherent in the cycle have maintained a surface environment that could sustain life. Carbonation/decarbonation reactions are the primary mechanisms for transferring carbon between the solid Earth and the ocean–atmosphere system. These processes can be broadly represented by the reaction: CaSiO3 (wollastonite) + CO2 (gas) ↔ CaCO3 (calcite) + SiO2 (quartz). This class of reactions is therefore critical to Earth's past and future habitability. Here, we summarize their significance as part of the Deep Carbon Obsevatory's “Earth in Five Reactions” project. In the forward direction, carbonation reactions like the one above describe silicate weathering and carbonate formation on Earth's surface. Recent work aims to resolve the balance between silicate weathering in terrestrial and marine settings both in the modern Earth system and through Earth's history. Rocks may also undergo carbonation reactions at high temperatures in the ultramafic mantle wedge of a subduction zone or during retrograde regional metamorphism. In the reverse direction, the reaction above represents various prograde metamorphic decarbonation processes that can occur in continental collisions, rift zones, subduction zones, and in aureoles around magmatic systems. We summarize the fluxes and uncertainties of major carbonation/decarbonation reactions and review the key feedback mechanisms that are likely to have stabilized atmospheric CO2 levels. Future work on planetary habitability and Earth's past and future climate will rely on an enhanced understanding of the long-term carbon cycle. 
    more » « less