skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photocurable Hypervalent Fluorinated Sulfur Containing Thin Films with Remarkable Hardness and Modulus
Novel tetrafluoro-λ6-sulfanyl-containing oligomers prepared by visible light-promoted addition of 1,4-(bis-chlorotetrafluoro-λ6-sulfanyl) benzene or 1,3-(bis-chlorotetrafluoro-λ6-sulfanyl) benzene to either 1,4-diethynyl benzene or the 1,3-diethynyl isomers form hard, stress resistant thin films on spin casting. The isomeric oligomers were utilized to establish a structure-function relationship for the mechanical properties of films prepared from the oligomers. The Young’s moduli of 145-nm-thick cured films could reach 60 GPa. The measured hardnesses, between 1.57 and 2.77 GPa, were more than double those of polymethyl methacrylate (PMMA) films. Curing of the tetrafluoro-λ6-sulfanyl-containing polymer films by UV irradiation resulted in coatings that exhibited remarkable hardness and modulus with good surface adhesion to silicon.  more » « less
Award ID(s):
2154772
PAR ID:
10611497
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI AG
Date Published:
Journal Name:
Molecules
Volume:
29
Issue:
18
ISSN:
1420-3049
Page Range / eLocation ID:
4413
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 1,3-Bis(6-bromohexyloxy)benzene, 2,7-bis(6-bromohexyloxy)naphthalene, 1,3-bis(4-bromomethylbenzyloxy)benzene, and 1,3-bis(3-bromomethylbenzyloxy)benzene were prepared via Williamson ether synthesis using resorcinol or 2,7-dihydroxynaphthalene and 1,6-dibromohexane, 1,4-bis(bromomethyl)benzene, or 1,3-bis(bromomethyl)benzene (21–47 % yield). These dibromides were condensed with 2,9-bis(4-hydroxyphenyl)-1,10-phenanthroline in the presence of K2CO3 to give the corresponding 31- to 35-membered macrocycles (3a–d, 22–63 % yield). When 3a–d were treated with CuI, mononuclear 1 : 1 complexes formed, in which the CuI chelates to the nitrogen donor atoms of the phenanthroline moiety (4a–d, 40–80 % yield). The crystal structures of 3a–c and 4a–c were determined and analyzed using density functional theory calculations and in the context of rotaxanes that could be formed by treatment of 4a–d with terminal alkynes (e.g. macrocycle dimensions, void volumes). The copper and iodide atoms in 4a–c significantly protrude from the least-squares plane of the phenanthroline moiety (0.46–0.63 Å and 1.65–2.07 Å). 
    more » « less
  2. Through variations in reaction solvent and stoichiometry, a series of S-diiodine adducts of 1,3- and 1,4-dithiane were isolated by direct reaction of the dithianes with molecular diiodine in solution. In the case of 1,3-dithiane, variations in reaction solvent yielded both the equatorial and the axial isomers of S-diiodo-1,3-dithiane, and their solution thermodynamics were further studied via DFT. Additionally, S,S’-bis(diiodo)-1,3-dithiane was also isolated. The 1:1 cocrystal, (1,4-dithiane)·(I2) was further isolated, as well as a new polymorph of S,S’-bis(diiodo)-1,4-dithiane. Each structure showed significant S···I halogen and chalcogen bonding interactions. Further, the product of the diiodine-promoted oxidative addition of acetone to 1,4-dithiane, as well as two new cocrystals of 1,4-dithiane-1,4-dioxide involving hydronium, bromide, and tribromide ions, was isolated. 
    more » « less
  3. Utilizing the N -heterocyclic chalcogenones hexahydro-1,3-bis(2,4,6-trimethylphenyl)-2 H -1,3-diazepine-2-thione ( SDiazMesS ) and hexahydro-1,3-bis(2,4,6-trimethylphenyl)-2 H -1,3-diazepine-2-selone ( SDiazMesSe ) as halogen-bond acceptors, a total of 24 new cocrystals were prepared. The solid-state structures of the parent molecules were also determined, along with those of their acetonitrile solvates. Through the reaction of the chalcogen atom with molecular diiodine, a variety of S—I—I and Se—I—I fragments were formed, spanning a wide range of I—I bond orders. With acetone as a reaction solvent, molecular diiodine causes the oxidative addition of acetone to the chalcogen atom, resulting in new C—S, C—Se and C—C covalent bonds under mild conditions. The common halogen-bond donors, iodopentafluorobenzene, 1,2-, 1,3- and 1,4-diiodotetrafluorobenzene, 1,3,5-trifluorotriiodobenzene and tetraiodoethylene resulted in halogen-bond-driven cocrystal formation. In most cases, the analogous SDiazMesS and SDiazMesSe cocrystals are isomorphic. 
    more » « less
  4. Abstract Cocrystallizations of diboronic acids [1,3‐benzenediboronic acid (1,3‐bdba), 1,4‐benzenediboronic acid (1,4‐bdba) and 4,4’‐biphenyldiboronic acid (4,4’‐bphdba)] and bipyridines [1,2‐bis(4‐pyridyl)ethylene (bpe) and 1,2‐bis(4‐pyridyl)ethane (bpeta)] generated the hydrogen‐bonded 1 : 2 cocrystals [(1,4‐bdba)(bpe)2] (1), [(1,4‐bdba)(bpeta)2] (2), [(1,3‐bdba)(bpe)2(H2O)2] (3) and [(1,3‐bdba)(bpeta)2(H2O)] (4), wherein 1,3‐bdba involved hydrated assemblies. The linear extended 4,4’‐bphdba exhibited the formation of 1 : 1 cocrystals [(4,4'‐bphdba)(bpe)] (5) and [(4,4'‐bphdba‐me)(bpeta)] (6). For 6, a hemiester was generated by an in‐situ linker transformation. Single‐crystal X‐ray diffraction revealed all structures to be sustained by B(O)−H⋅⋅⋅N, B(O)−H⋅⋅⋅O, Ow−H⋅⋅⋅O, Ow−H⋅⋅⋅N, C−H⋅⋅⋅O, C−H⋅⋅⋅N, π⋅⋅⋅π, and C−H⋅⋅⋅π interactions. The cocrystals comprise 1D, 2D, and 3D hydrogen‐bonded frameworks with components that display reactivities upon cocrystal formation and within the solids. In 1 and 3, the C=C bonds of the bpe molecules undergo a [2+2] photodimerization. UV radiation of each compound resulted in quantitative conversion of bpe into cyclobutane tpcb. The reactivity involving 1 occurred via 1D‐to‐2D single‐crystal‐to‐single‐crystal (SCSC) transformation. Our work supports the feasibility of the diboronic acids as formidable structural and reactivity building blocks for cocrystal construction. 
    more » « less
  5. null (Ed.)
    The halogen-bond (X-bond) donors 1,3- and 1,4-diiodotetrafluorobenzene (1,3-di-I-tFb and 1,4-di-I-tFb, respectively) form cocrystals with trans-1,2-bis(2-pyridyl)ethylene (2,2′-bpe) assembled by N···I X-bonds. In each cocrystal, 2(1,3-di-I-tFb)·2(2,2′-bpe) and (1,4-di-I-tFb)·(2,2′-bpe), the donor molecules support the C=C bonds of 2,2′-bpe to undergo an intermolecular [2+2] photodimerization. UV irradiation of each cocrystal resulted in stereospecific and quantitative conversion of 2,2′-bpe to rctt-tetrakis(2-pyridyl)cyclobutane (2,2′-tpcb). In each case, the reactivity occurs via face-to-face π-stacked columns wherein nearest-neighbor pairs of 2,2′-bpe molecules lie sandwiched between X-bond donor molecules. Nearest-neighbor C=C bonds are stacked criss-crossed in both cocrystals. The reactivity was ascribed to the olefins undergoing pedal-like motion in the solid state. The stereochemistry of 2,2′-tpcb is confirmed in cocrystals 2(1,3-di-I-tFb)·(2,2′-tpcb) and (1,4-di-I-tFb)·(2,2′-tpcb). 
    more » « less