Turtlegrass virus X, which infects the seagrass Thalassia testudinum, is the only potexvirus known to infect marine flowering plants. We investigated potexvirus distribution in seagrasses using a degenerate reverse transcription polymerase chain reaction (RT-PCR) assay originally designed to capture potexvirus diversity in terrestrial plants. The assay, which implements Potex-5 and Potex-2RC primers, successfully amplified a 584 nt RNA-dependent RNA polymerase (RdRp) fragment from TVX-infected seagrasses. Following validation, we screened 74 opportunistically collected, apparently healthy seagrass samples for potexviruses using this RT-PCR assay. The survey examined the host species T. testudinum, Halodule wrightii, Halophila stipulacea, Syringodium filiforme, Ruppia maritima, Zostera marina. Potexvirus PCR products were successfully generated only from T. testudinum samples and phylogenetic analysis of sequenced PCR products revealed five distinct TVX sequence variants. Although the RT-PCR assay revealed limited potexvirus diversity in seagrasses, the expanded geographic distribution of TVX shown here emphasizes the importance of future studies to investigate T. testudinum populations across its native range and understand how the observed fine-scale genetic diversity affects host-virus interactions. 
                        more » 
                        « less   
                    This content will become publicly available on January 8, 2026
                            
                            Construction and characterization of an infectious cDNA clone of turtle grass virus X from a naturally infected Thalassia testudinum plant
                        
                    
    
            ABSTRACT Seagrasses are a polyphyletic group of marine flowering plants that play crucial roles in nearshore ecology, yet their interactions with viruses remain largely unexplored. This study presents the construction and characterization of an infectious cDNA clone of the potexvirus turtle grass virus X (TGVX). The complete genome of this positive-sense single-stranded RNA virus was amplified from field samples ofThalassia testudinumand assembled into a pLX-based mini binary vector using a multi-fragment directional cloning strategy, resulting in the infectious clone pLX-TGVX. Agroinfection assays of potexvirus-freeT. testudinumplants resulted in systemic infections by TGVX, as confirmed by multiplex RT-PCR experiments and phenotypic changes reflecting virus-induced symptoms. Ultrastructural studies also demonstrated significant cytopathological changes resulting from TGVX infection, including chloroplast swelling, reduced thylakoid grana, and the presence of viral replication organelles and filamentous virus-like particles. The development of the TGVX infectious clone offers a novel tool for investigating the impact of this virus on seagrass health and productivity. This study demonstrates the first successful agroinfection of a marine plant with an infectious clone, creating a new avenue for studying viruses identified through sequence-based surveys and paving the way for exploring the ecological significance of viral infection in these critical marine ecosystems.IMPORTANCEThis study pioneers the construction of an infectious clone of turtle grass virus X and describes its application in the natural marine plant host,Thalassia testudinum. The creation of this infectious clone not only provides a valuable tool for marine plant virology research but also opens new avenues for exploring the influence of viral infections on the health and productivity of seagrass meadows. Given that seagrasses play a crucial role in sediment stabilization, nutrient cycling, and habitat provisioning, understanding the impact of viruses on these ecosystems is essential for their effective conservation and management. This methodological advance enables detailed studies of viral replication, virus-host interactions, and the broader ecological implications of viral infections in marine plants. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2219547
- PAR ID:
- 10611564
- Publisher / Repository:
- American Society for Microbiology
- Date Published:
- Journal Name:
- mBio
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 2150-7511
- Page Range / eLocation ID:
- 02828-24
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Summary IRE1, BI‐1, and bZIP60 monitor compatible plant–potexvirus interactions though recognition of the viral TGB3 protein. This study was undertaken to elucidate the roles of threeIRE1isoforms, thebZIP60UandbZIP60S, andBI‐1roles in genetic reprogramming of cells during potexvirus infection.Experiments were performed usingArabidopsis thalianaknockout lines andPlantago asiatica mosaic virusinfectious clone tagged with the green fluorescent protein gene (PlAMV‐GFP).There were more PlAMV‐GFP infection foci inire1a/b,ire1c,bzip60, andbi‐1knockout than wild‐type (WT) plants. Cell‐to‐cell movement and systemic RNA levels were greaterbzip60andbi‐1than in WT plants. Overall, these data indicate an increased susceptibility to virus infection. Transgenic overexpression ofAtIRE1borStbZIP60inire1a/borbzip60mutant background reduced virus infection foci, whileStbZIP60expression influences virus movement. Transgenic overexpression ofStbZIP60also confers endoplasmic reticulum (ER) stress resistance following tunicamycin treatment. We also show bZIP60U and TGB3 interact at the ER.This is the first demonstration of a potatobZIPtranscription factor complementing genetic defects in Arabidopsis. Evidence indicates that the three IRE1 isoforms regulate the initial stages of virus replication and gene expression, while bZIP60 and BI‐1 contribute separately to virus cell‐to‐cell and systemic movement.more » « less
- 
            Ghorbani, Abozar (Ed.)Seagrasses are marine angiosperms that form highly productive and diverse ecosystems. These ecosystems, however, are declining worldwide. Plant-associated microbes affect critical functions like nutrient uptake and pathogen resistance, which has led to an interest in the seagrass microbiome. However, despite their significant role in plant ecology, viruses have only recently garnered attention in seagrass species. In this study, we produced original data and mined publicly available transcriptomes to advance our understanding of RNA viral diversity inZostera marina,Zostera muelleri,Zostera japonica, andCymodocea nodosa. InZ.marina, we present evidence for additional Zostera marina amalgavirus 1 and 2 genotypes, and a complete genome for an alphaendornavirus previously evidenced by an RNA-dependent RNA polymerase gene fragment. InZ.muelleri, we present evidence for a second complete alphaendornavirus and near complete furovirus. Both are novel, and, to the best of our knowledge, this marks the first report of a furovirus infection naturally occurring outside of cereal grasses. InZ.japonica, we discovered genome fragments that belong to a novel strain of cucumber mosaic virus, a prolific pathogen that depends largely on aphid vectoring for host-to-host transmission. Lastly, inC.nodosa, we discovered two contigs that belong to a novel virus in the familyBetaflexiviridae. These findings expand our knowledge of viral diversity in seagrasses and provide insight into seagrass viral ecology.more » « less
- 
            Viruses that infect phytoplankton are abundant in all regions of the global ocean. Despite their ubiquity, little is understood regarding how biotic interactions can alter virus infection success as well as the fate of phytoplankton hosts. In previous work, the bacterially derived compound 2-heptyl-4-quinolone (HHQ) has been shown to protect the cosmopolitan coccolithophoreEmiliania huxleyifrom virus-induced mortality. The present study explores the potential mechanisms through which protection is conferred. Using a suite of transmission electron microscopy and physiological diagnostic staining techniques, we show that whenE. huxleyiis exposed to HHQ, viruses can gain entry into cells but viral replication and release is inhibited. These findings are supported by a smaller burst size, as well as lower infectious and total virus production when the host is treated with nanomolar concentrations of HHQ. Additionally, diagnostic staining results indicate that programmed cell death markers commonly associated with viral infection are not activated when infectedE. huxleyiare exposed to HHQ. Together, these results suggest that the ability of HHQ to inhibit infectious viral production protects the alga not from getting infected, but from cell lysis. This work identifies a new mechanistic role of bacterial quorum sensing molecules in mediating viral infections in marine microbial systems.more » « less
- 
            Due to the error-prone nature of viral RNA-dependent RNA polymerases, the replication of RNA viruses results in a diversity of viral genomes harboring point mutations, deletions, insertions, and genome rearrangements. Citrus tristeza virus (CTV), a causal agent of diseases of economically important citrus species, shows intrinsic genetic stability. While the virus appears to have some mechanism that limits the accumulation of single-nucleotide variants, the production of defective viral genomes (DVGs) during virus infection has been reported for certain variants of CTV. The intra-host diversity generated during plant infection with variant T36 (CTV-T36) remains unclear. To address this, we analyzed the RNA species accumulated in the initially infected and systemic leaves of Nicotiana benthamiana plants inoculated with an infectious cDNA clone of CTV-T36, which warranted that infection was initiated by a known, well-defined sequence variant of the virus. CTV-T36 limited the accumulation of single-nucleotide mutants during infection. With that, four types of DVGs—deletions, insertions, and copy- and snap-backs—were found in all the samples, with deletions and insertions being the most common types. Hot-spots across the genome for DVG recombination and short direct sequence repeats suggest that sequence complementarity could mediate DVG formation. In conclusion, our study illustrates the formation of diverse DVGs during CTV-T36 infection. To the best of our knowledge, this is the first study that has analyzed the genetic variability and recombination of a well-defined sequence variant of CTV in an herbaceous host.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
