The reduction potentials (reported vs. Fc + /Fc) for a series of Cp′ 3 Ln complexes (Cp′ = C 5 H 4 SiMe 3 , Ln = lanthanide) were determined via electrochemistry in THF with [ n Bu 4 N][BPh 4 ] as the supporting electrolyte. The Ln( iii )/Ln( ii ) reduction potentials for Ln = Eu, Yb, Sm, and Tm (−1.07 to −2.83 V) follow the expected trend for stability of 4f 7 , 4f 14 , 4f 6 , and 4f 13 Ln( ii ) ions, respectively. The reduction potentials for Ln = Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu, that form 4f n 5d 1 Ln( ii ) ions ( n = 2–14), fall in a narrow range of −2.95 V to −3.14 V. Only cathodic events were observed for La and Ce at −3.36 V and −3.43 V, respectively. The reduction potentials of the Ln( ii ) compounds [K(2.2.2-cryptand)][Cp′ 3 Ln] (Ln = Pr, Sm, Eu) match those of the Cp′ 3 Ln complexes. The reduction potentials of nine (C 5 Me 4 H) 3 Ln complexes were also studied and found to be 0.05–0.24 V more negative than those of the Cp′ 3 Ln compounds.
more »
« less
This content will become publicly available on January 22, 2026
A comprehensive approach for elucidating the interplay between 4f n+1 and 4f n 5d 1 configurations in Ln 2+ complexes
To advance our ability to control the electronic properties of divalent lanthanides, the interplay between deformation densities, 4f interelectronic repulsion, and ligand field effects is discussed to predict the nature of their ground states.
more »
« less
- Award ID(s):
- 2154255
- PAR ID:
- 10611690
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 16
- Issue:
- 4
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 2024 to 2033
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report on spectroscopic measurements on the 4f76s28S7/2∘−4f7(8S∘)6s6p(1P∘)8P5/2,7/2transitions at 466.32 nm and 462.85 nm, respectively, in neutral europium-151 and europium-153. The center of gravity frequencies for the 151 and 153 isotopes for both transitions are reported for the first time using saturated absorption spectroscopy. For the 6s6p(1P∘)8P5/2state, the center of gravity frequencies were found to be 642,894,493.3(4) MHz and 642,891,693.3(9) MHz for the 151 and 153 isotopes, respectively. The hyperfine constants for the upper state were found to beA(151)=−157.01(3)MHz,B(151)=74.5(4)MHz andA(153)=−69.43(14)MHz,B(153)=191.0(26)MHz. These hyperfine values are all consistent with previously published results except forB(151) that has a small discrepancy. The isotope shift was found to be 2799.54(20) MHz, a small discrepancy with previously published results. For the 6s6p(1P∘)8P7/2state, the center of gravity frequencies were found to be 647,708,930.6(6) MHz and 647,705,958.4(26) MHz for the 151 and 153 isotopes, respectively. The hyperfine constants for the upper state were found to beA(151)=−218.66(4)MHz,B(151)=−293.4(8)MHz andA(153)=−97.15(13)MHz,B(153)=−750(3)MHz. These values are all consistent with previously published results except forA(151) that has a small discrepancy. The isotope shift was found to be 2972.8(5) MHz, a small discrepancy with previously measured results.more » « less
-
Abstract The recently reported19F‐detected dual‐optimized inverted1JCC1,n‐ADEQUATE experiment and the previously reported1H‐detected version have been modified to incorporateJ‐modulation, making it feasible to acquire all 1,1‐ and 1,n‐ADEQUATE correlations as well as1JCCandnJCChomonuclear scalar couplings in a single experiment. The experiments are demonstrated usingN,N‐dimethylamino‐2,5,6‐trifluoro‐3,4‐phthalonitrile andN,N‐dimethylamino‐3,4‐phthalonitrile.more » « less
An official website of the United States government
