Visual short-term memory (VSTM) is an essential store that creates continuous representations from disjointed visual input. However, severe capacity limits exist, reflecting constraints in supporting brain networks. VSTM performance shows spatial biases predicted by asymmetries in the brain based upon the location of the remembered object. Visual representations are retinotopic, or relative to location of the representation on the retina. It therefore stands to reason that memory performance may also show retinotopic biases. Here, eye position was manipulated to tease apart retinotopic coordinates from spatiotopic coordinates, or location relative to the external world. Memory performance was measured while participants performed a color change-detection task for items presented across the visual field while subjects fixated central or peripheral position. VSTM biases reflected the location of the stimulus on the retina, regardless of where the stimulus appeared on the screen. Therefore, spatial biases occur in retinotopic coordinates in VSTMand suggest a fundamental link between behavioral VSTM measures and visual representations.
more »
« less
Brief memory reactivations enable generalization of offline visual perceptual learning mechanisms
Abstract Perceptual learning can significantly improve visual sensitivity even in fully matured adults. However, the ability to generalize learning to untrained conditions is often limited. While traditionally, perceptual learning is attributed to practice-dependent plasticity mechanisms, recent studies suggest that brief memory reactivations can efficiently improve visual perception, recruiting higher-level brain regions. Here we provide evidence that similar memory reactivation mechanisms promote generalization of offline learning mechanisms. Human participants encoded a visual discrimination task with the target stimulus at retinotopic location A. Then, brief memory reactivations of only five trials each were performed on separate days at location A. Generalization was tested at retinotopic location B. Results indicate remarkable enhancement of location B performance following memory reactivations, pointing to efficient offline generalization mechanisms. A control experiment with no reactivations showed minimal generalization. These findings suggest that reactivation-induced learning further enhances learning efficiency by promoting offline generalization mechanisms to untrained conditions, and can be further tested in additional learning domains, with potential future clinical implications.
more »
« less
- Award ID(s):
- 2241417
- PAR ID:
- 10611794
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Bilingual infants from 6‐ to 24‐months of age are more likely to generalize, flexibly reproducing actions on novel objects significantly more often than age‐matched monolingual infants are. In the current study, we examine whether the addition of novel verbal labels enhances memory generalization in a perceptually complex imitation task. We hypothesized that labels would provide an additional retrieval cue and aid memory generalization for bilingual infants. Specifically, we hypothesized that bilinguals might be more likely than monolinguals to map multiple perceptual features onto a novel label and therefore show enhanced generalization. Eighty‐seven 18‐month‐old monolingual and bilingual infants were randomly assigned to one of two experimental conditions or a baseline control condition. In the experimental conditions, either no label or a novel label was added during demonstration and again at the beginning of the test session. After a 24‐hr delay, infants were tested with the same stimulus set to test cued recall and with a perceptually different but functionally equivalent stimulus set to test memory generalization. Bilinguals performed significantly above baseline on both cued recall and memory generalization in both experimental conditions, whereas monolinguals performed significantly above baseline only on cued recall in both experimental conditions. These findings show a difference between monolinguals and bilinguals in memory generalization and suggest that generalization differences between groups may arise from visual perceptual processing rather than linguistic processing. A video abstract of this article can be viewed athttps://youtu.be/yXB4pM3fF2kmore » « less
-
The context in which learning occurs is sufficient to reconsolidate stored memories and neuronal reactivation may be crucial to memory consolidation during sleep. The mechanisms of context-dependent and sleep-dependent memory (re)consolidation are unknown but involve the hippocampus. We simulated memory (re)consolidation using a connectionist model of the hippocampus that explicitly accounted for its dorsoventral organization and for CA1 proximodistal processing. Replicating human and rodent (re)consolidation studies yielded the following results. (1) Semantic overlap between memory items and extraneous learning was necessary to explain experimental data and depended crucially on the recurrent networks of dorsal but not ventral CA3. (2) Stimulus-free, sleep-induced internal reactivations of memory patterns produced heterogeneous recruitment of memory items and protected memories from subsequent interference. These simulations further suggested that the decrease in memory resilience when subjects were not allowed to sleep following learning was primarily due to extraneous learning. (3) Partial exposure to the learning context during simulated sleep (i.e., targeted memory reactivation) uniformly increased memory item reactivation and enhanced subsequent recall. Altogether, these results show that the dorsoventral and proximodistal organization of the hippocampus may be important components of the neural mechanisms for context-based and sleep-based memory (re)consolidations.more » « less
-
Abstract Practicing complex locomotor skills, such as those involving a step sequence engages distinct perceptual and motor mechanisms that support the recall of learning under new conditions (i.e., skill transfer). While sleep has been shown to enhance learning of sequences of fine movements (i.e., sleep-dependent consolidation), here we examined whether this benefit extends to learning of a locomotor pattern. Specifically, we tested the perceptual and motor learning of a locomotor sequence following sleep compared to wake. We hypothesized that post-practice sleep would increase locomotor sequence learning in the perceptual, but not in the motor domain. In this study, healthy young adult participants (n = 48; 18–33 years) practiced a step length sequence on a treadmill cued by visual stimuli displayed on a screen during training. Participants were then tested in a perceptual condition (backward walking with the same visual stimuli), or a motor condition (forward walking but with an inverted screen). Skill was assessed immediately, and again after a 12-h delay following overnight sleep or daytime wake (n = 12 for each interval/condition). Off-line learning improved following sleep compared to wake, but only for the perceptual condition. Our results suggest that perceptual and motor sequence learning are processed separately after locomotor training, and further points to a benefit of sleep that is rooted in the perceptual as opposed to the motor aspects of motor learning.more » « less
-
Abstract Face memory, including the ability to recall a person’s name, is of major importance in social contexts. Like many other memory functions, it may rely on sleep. We investigated whether targeted memory reactivation during sleep could improve associative and perceptual aspects of face memory. Participants studied 80 face-name pairs, and then a subset of spoken names with associated background music was presented unobtrusively during a daytime nap. This manipulation preferentially improved name recall and face recognition for those reactivated face-name pairs, as modulated by two factors related to sleep quality; memory benefits were positively correlated with the duration of stage N3 sleep (slow-wave sleep) and negatively correlated with measures of sleep disruption. We conclude that (a) reactivation of specific face-name memories during sleep can strengthen these associations and the constituent memories, and that (b) the effectiveness of this reactivation depends on uninterrupted N3 sleep.more » « less
An official website of the United States government
