We employ molecular dynamics (MD) simulations to investigate the mechanical behaviors of immiscible polymer interfaces enhanced by block copolymer compatibilizers. We show that the entanglement density at the interface, governed by the Flory–Huggins parameter χ, is critical for mechanical performance. Increasing immiscibility leads to sharper interfaces with reduced interfacial entanglements, resulting in easy chain pullout during tensile deformation and weaker interfacial strength. Adding block copolymer compatibilizers to the blends can switch the failure mechanism from interfacial chain pullout to bulk-phase crazing, substantially enhancing mechanical performance. Although long diblock and tetrablock copolymers only mildly increase the interfacial entanglement density, they can act as stress transmitters across the interface by entangling with chains in the bulk domains. Tetrablock copolymers are particularly effective for strengthening polymer blends by forming loops at the interface, making chain pullout topologically more difficult and promoting energy dissipation through crazing in the bulk regions. Our findings reveal the roles of both entanglement at interfaces and block copolymer architecture in the mechanical properties of immiscible polymer interfaces, which may guide the design of better compatibilizers for enhancing inhomogeneous polymer samples. 
                        more » 
                        « less   
                    This content will become publicly available on April 1, 2026
                            
                            Molecular Dynamics of a Polymer Blend Model on a Solid Substrate
                        
                    
    
            We performed extensive molecular dynamics simulations using a bead–spring model to investigate the interfacial behavior of blends of linear and cyclic polymer chains confined between two planar, attractive substrates. The model system was studied over a range of chain lengths spanning an order of magnitude in the number of beads for varying blend compositions and for two different levels of substrate affinity. For short chains, we observed the preferential adsorption of linear chains at the substrate interface when they are the majority component (10% cyclic chains) as well as at equimolar composition. In contrast, for longer chains, cyclic chains are preferentially enriched at the interface. These results extend recent findings from neutron reflectivity experiments—where the enrichment of cyclic polystyrene chains at low-energy surfaces was demonstrated—to systems under solid confinement, providing deeper insight into the structural behavior of topologically distinct polymers near interfaces. This work highlights the potential for tuning interfacial composition and properties in polymer blends through topological design, with implications for advanced coatings, membranes, and nanostructured materials. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2114640
- PAR ID:
- 10611837
- Publisher / Repository:
- Molecules
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 30
- Issue:
- 8
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 1734
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Block copolymers at homopolymer interfaces are poised to play a critical role in the compatibilization of mixed plastic waste, an area of growing importance as the rate of plastic accumulation rapidly increases. Using molecular dynamics simulations of Kremer–Grest polymer chains, we have investigated how the number of blocks and block degree of polymerization in a linear multiblock copolymer impacts the interface thermodynamics of strongly segregated homopolymer blends, which is key to effective compatibilization. The second virial coefficient reveals that interface thermodynamics are more sensitive to block degree of polymerization than to the number of blocks. Moreover, we identify a strong correlation between surface pressure (reduction of interfacial tension) and the spatial uniformity of block junctions on the interface, yielding a morphological framework for interpreting the role of compatibilizer architecture (number of blocks) and block degree of polymerization. These results imply that, especially at high interfacial loading, the choice of architecture of a linear multiblock copolymer compatibilizing surfactant does not greatly affect the modification of interfacial tension.more » « less
- 
            Controlling morphology of polysiloxane blends crosslinked by the hydrosilylation reaction followed by pyrolysis constitutes a robust strategy to fabricate polymer-derived ceramics (PDCs) for a number of applications, from water purification to hydrogen storage. Herein, we introduce a dissipative particle dynamics (DPD) approach that captures the phase separation in binary and ternary polymer blends undergoing hydrosilylation. Linear polyhydromethylsiloxane (PHMS) chains are chosen as preceramic precursors and linear vinyl-terminated polydimethylsiloxane (v-PDMS) chains constitute the reactive sacrificial component. Hydrosilylation of carbon–carbon unsaturated double bonds results in the formation of carbon–silicon bonds and is widely utilized in the synthesis of organosilicons. We characterize the dynamics of binary PHMS/v-PDMS blends undergoing hydrosilylation and ternary blends in which a fraction of the reactive sacrificial component (v-PDMS) is replaced with the non-reactive sacrificial component (methyl-terminated PDMS (m-PDMS), polyacrylonitrile (PAN), or poly(methyl methacrylate) (PMMA)). Our results clearly demonstrate that the morphology of the sacrificial domains in the nanostructured polymer network formed can be tailored by tunning the composition, chemical nature, and the degree of polymerization of the sacrificial component. We also show that the addition of a non-reactive sacrificial component introduces facile means to control the self-assembly and morphology of these nanostructured materials by varying the fraction, degree of polymerization, or the chemical nature of this component.more » « less
- 
            Bottlebrush polymers are complex macromolecules with tunable physical properties dependent on the chemistry and architecture of both the side chains and the backbone. Prior work has demonstrated that bottlebrush polymer additives can be used to control the interfacial properties of blends with linear polymers but has not specifically addressed the effects of bottlebrush side chain microstructures. Here, using a combination of experiments and self-consistent field theory (SCFT) simulations, we investigated the effects of side chain microstructures by comparing the segregation of bottlebrush additives having random copolymer side chains with bottlebrush additives having a mixture of two different homopolymer side chain chemistries. Specifically, we synthesized bottlebrush polymers with either poly(styrene- ran -methyl methacrylate) side chains or with a mixture of polystyrene (PS) and poly(methyl methacrylate) (PMMA) side chains. The bottlebrush additives were matched in terms of PS and PMMA compositions, and they were blended with linear PS or PMMA chains that ranged in length from shorter to longer than the bottlebrush side chains. Experiments revealed similar behaviors of the two types of bottlebrushes, with a slight preference for mixed side-chain bottlebrushes at the film surface. SCFT simulations were qualitatively consistent with experimental observations, predicting only slight differences in the segregation of bottlebrush additives driven by side chain microstructures. Specifically, these slight differences were driven by the chemistries of the bottlebrush polymer joints and side chain end-groups, which were entropically repelled and attracted to interfaces, respectively. Using SCFT, we also demonstrated that the interfacial behaviors were dominated by entropic effects with high molecular weight linear polymers, leading to enrichment of bottlebrush near interfaces. Surprisingly, the SCFT simulations showed that the chemistry of the joints connecting the bottlebrush backbones and side chains played a more significant role compared with the side chain end groups in affecting differences in surface excess of bottlebrushes with random and mixed side chains. This work provides new insights into the effects of side chain microstructure on segregation of bottlebrush polymer additives.more » « less
- 
            Polymer blend compatibilization is an attractive solution for mechanical recycling of mixed plastic waste because it can result in tough blends. In this work, hydroxy-telechelic polyethylene (HOPEOH) reactive additives were used to compatibilize blends of polyethylene terephthalate (PET) and linear low-density polyethylene (LLDPE). HOPEOH additives were synthesized with molar masses of 1–20 kg/mol by ring-opening metathesis polymerization of cyclooctene followed by catalytic hydrogenation. Melt-compounded blends containing 0.5 wt % HOPEOH displayed reduced dispersed phase LLDPE particle sizes with ductilities comparable to virgin PET and almost seven times greater than neat blends, regardless of additive molar mass. In contrast, analogous blends containing monohydroxy PE additives of comparable molar masses did not result in compatibilization even at 2 wt % loading. The results strongly suggest that both hydroxy ends of HOPEOH undergo transesterification reactions during melt mixing with PET to form predominantly PET–PE–PET triblock copolymers at the interface of the dispersed and matrix phases. We hypothesize that the triblock copolymer compatibilizers localized at the interface form trapped entanglements of the PE midblocks with nearby LLDPE homopolymer chains by a hook-and-clasp mechanism. Finally, HOPEOH compounds were able to efficiently compatibilize blends derived solely from postconsumer PET and PE bottles and film, suggesting their industrial applicability.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
