skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 18, 2026

Title: Topochemical Synthesis, micro-Electron Diffraction (3D ED), and Electron Beam-Initiated Topotactic Dimer Splitting of cis,syn-Thymine Dimer Crystals
A solid-state photochemical reaction of crystalline thymine hydrate (TH) resulted in a clean topochemical transformation into the cis-syn-dimer (TD), matching the structure as the one responsible for most UV lesions in DNA. Microcrystals of TD grown by drop casting piperidine solutions in a TEM grid made it possible to determine their structure by microelectron diffraction (3D ED) and to confirm expectations that an in situ electron-beam ionization reaction could result in a topotactic dimer splitting that, in this case, retains single-crystal-to-single-crystal character up to ca. 30% conversion. The packing structure of dimer TD and the as formed monomer T displays a novel trimeric hydrogen bonding motif, and the latter represents a new crystal phase. Beyond interesting analogies between single crystals of T and TD, and DNA, such as templated dimer formation and electron-transfer-induced repair, this work is a rare example of an electron beam-induced chemical reaction in the crystalline solid state.  more » « less
Award ID(s):
2154210
PAR ID:
10611910
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Chemical Societt
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
147
Issue:
24
ISSN:
0002-7863
Page Range / eLocation ID:
20426 to 20430
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    4-Fluoro-9-anthracenecarboxylic acid ( 4F-9AC ) is a thermally reversible (T-type) photomechanical molecular crystal. The photomechanical response is driven by a [4 + 4] photodimerization reaction, while the photodimer dissociation determines the reset time. In this paper, both the chemical kinetics of dimer dissociation (using a microscopic fluorescence-recovery-after-photobleaching experiment) and mechanical reset dynamics (by imaging bending microneedles) for single 4F-9AC crystals are measured. The dissociation kinetics depend strongly on the initial concentration of photodimer, slowing down and becoming nonexponential at high dimer concentrations. This dose-dependent behavior is also observed in the mechanical response of bending microneedles. A new feature in the photomechanical behavior is identified: the ability of a very weak control beam to suppress dimer dissociation after large initial dimer conversions. This phenomenon provides a way to optically control the mechanical response of this photomechanical crystal. To gain physical insight into the origin of the nonexponential recovery curves, the experimental results are analyzed in terms of a standard first-order kinetic model and a nonlinear Finke–Watzky (FW) model. The FW model can qualitatively reproduce the transition from exponential to sigmoidal recovery with larger initial conversions, but neither model can reproduce the suppression of the recovery in the presence of a weak holding beam. These results highlight the need for more sophisticated theories to describe cooperative phenomena in solid-state crystalline reactions, as well as demonstrating how this behavior could lead to new properties and/or improved performance in photomechanical materials. 
    more » « less
  2. Abstract Technologically critical rare-earth elements are notoriously difficult to separate, owing to their subtle differences in ionic radius and coordination number1–3. The natural lanthanide-binding protein lanmodulin (LanM)4,5is a sustainable alternative to conventional solvent-extraction-based separation6. Here we characterize a new LanM, fromHansschlegelia quercus(Hans-LanM), with an oligomeric state sensitive to rare-earth ionic radius, the lanthanum(III)-induced dimer being >100-fold tighter than the dysprosium(III)-induced dimer. X-ray crystal structures illustrate how picometre-scale differences in radius between lanthanum(III) and dysprosium(III) are propagated toHans-LanM’s quaternary structure through a carboxylate shift that rearranges a second-sphere hydrogen-bonding network. Comparison to the prototypal LanM fromMethylorubrum extorquensreveals distinct metal coordination strategies, rationalizingHans-LanM’s greater selectivity within the rare-earth elements. Finally, structure-guided mutagenesis of a key residue at theHans-LanM dimer interface modulates dimerization in solution and enables single-stage, column-based separation of a neodymium(III)/dysprosium(III) mixture to >98% individual element purities. This work showcases the natural diversity of selective lanthanide recognition motifs, and it reveals rare-earth-sensitive dimerization as a biological principle by which to tune the performance of biomolecule-based separation processes. 
    more » « less
  3. High-energy electrons induce sample damage and motion at the nanoscale to fundamentally limit the determination of molecular structures by electron diffraction. Using a fast event-based electron counting (EBEC) detector, we characterize beam-induced, dynamic, molecular crystal lattice reorientations (BIRs). These changes are sufficiently large to bring reciprocal lattice points entirely in or out of intersection with the sphere of reflection, occur as early events in the decay of diffracted signal due to radiolytic damage, and coincide with beam-induced migrations of crystal bend contours within the same fluence regime and at the same illuminated location on a crystal. These effects are observed in crystals of biotin, a series of amino acid metal chelates, and a six-residue peptide, suggesting that incident electrons inevitably warp molecular lattices. The precise orientation changes experienced by a given microcrystal are unpredictable but are measurable by indexing individual diffraction patterns during beam-induced decay. Reorientations can often tilt a crystal lattice several degrees away from its initial position before irradiation, and for an especially beam-sensitive Zn(II)-methionine chelate, are associated with dramatic crystal quakes prior to 1 e Å−2electron beam fluence accumulates. Since BIR coincides with the early stages of beam-induced damage, it echoes the beam-induced motion observed in single-particle cryoEM. As with motion correction for cryoEM imaging experiments, accounting for BIR-induced errors during data processing could improve the accuracy of MicroED data. 
    more » « less
  4. Reaction of bis(dicyclohexylphosphino)ethane dioxide with hydrogen peroxide leads to an extended crystalline network based on the formation of hydrogen bonds with the PO groups of the diphosphine dioxide. The structural motif of the network is characterized by X-ray diffraction. A new selective synthesis for an industrially important MEKPO (methyl ethyl ketone peroxide) dimer is described. The dimer is created by reaction of dppe dioxide (bis(diphenylphosphino)ethane dioxide) with butanone and hydrogen peroxide. This peroxide is stabilized by forming strong hydrogen bonds to the phosphine oxide groups within an extended network, which has been characterized by single crystal X-ray diffraction. Reaction of acetylacetone with hydrogen peroxide, irrespective of the presence of phosphine oxide, leads to the stereoselective formation of two dioxolanes. Both cyclic peroxides have been obtained in crystalline forms suitable for single crystal X-ray diffractions. 
    more » « less
  5. null (Ed.)
    A covalently-linked dimer of two single-molecule magnets (SMMs), [Mn 6 O(O 2 CMe) 6 (1,3-ppmd) 3 ](ClO 4 ) 2 , has been synthesized from the reaction of [Mn 3 O(O 2 CMe) 6 (py) 3 ](ClO 4 ) with 1,3-phenylene- bis (pyridin-2-ylmethanone) dioxime (1,3-ppmdH 2 ). It contains two [Mn III 3 O] +7 triangular units linked by three 1,3-ppmd 2− groups into an [Mn 3 ] 2 dimer with D 3 symmetry. Solid-state dc and ac magnetic susceptibility measurements showed that each Mn 3 subunit retains its properties as an SMM with an S = 6 ground state. Magnetization vs. dc field sweeps on a single crystal reveal hysteresis loops below 1.3 K exhibiting exchange-biased quantum tunnelling of magnetization (QTM) steps with a bias field of +0.06 T. This is the first example of a dimer of SMMs showing a positive exchange bias of the QTM steps in the hysteresis loops, and it has therefore been subjected to a detailed analysis. Simulation of the loops determines that each Mn 3 unit is exchange-coupled with its neighbour primarily through the 1,3-ppmd 2− linkers, confirming a weak ferromagnetic inter-Mn 3 interaction of J 12 ≈ +6.5 mK ( Ĥ = −2 JŜ i · Ŝ j convention). High-frequency EPR studies of a microcrystalline powder sample enable accurate determination of the zero-field splitting parameters of the uncoupled Mn 3 SMMs, while also confirming the weak exchange interaction between the two SMMs within each [Mn 3 ] 2 dimer. The combined results emphasize the ability of designed covalent linkers to generate inter-SMM coupling of a particular sign and relative magnitude, and thus the ability of such linkers to modulate the quantum physics. As such, this work supports the feasibility of using designed covalent linkers to develop molecular oligomers of SMMs, or other magnetic molecules, as multi-qubit systems and/or other components of new quantum technologies. 
    more » « less