skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 2, 2026

Title: Discovering universal temperature regulation dynamics in animals
Hibernation is an adaptation to extreme environmental seasonality that has been studied for almost 200 years, but our mechanistic understanding of the underlying physiological system remains lacking due to the partially observed nature of the system. During hibernation, small mammals, such as the Arctic ground squirrel, exhibit dramatic oscillations in body temperature, typically one of the only physiological states measured, of up to 40◦C. These spikes are known as interbout arousals and typically occur 10-20 times throughout hibernation. The physiological mechanism that drives interbout arousals is unknown, but two distinct mechanisms have been hypothesized. Using model selection for partially observed systems, we are able to differentiate between these two mechanistic hypotheses using only body temperature data recorded from a free-ranging Arctic ground squirrel. We then modify our discovered physiological model of Arctic ground squirrel to include environmental information and find that we can qualitatively match body temperature data recorded from a wide range of species, including a bird, a shrew, and a bear, which also dynamically modulate body temperature. Our results suggest that a universal, environmentally sensitive mechanism could regulate body temperature across a diverse range of species—a mechanistic restructuring of our current understanding of the physiological organization across species. While the findings presented here are applicable to thermophysiology, the general modeling procedure is applicable to time series data collected from partially observed biological, chemical, physical, mechanical, and cosmic systems for which the goal is to elucidate the underlying mechanism or control structure.  more » « less
Award ID(s):
2235451
PAR ID:
10612044
Author(s) / Creator(s):
; ;
Publisher / Repository:
arXiv
Date Published:
Journal Name:
arXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Most mammals maintain their body temperature around 37°C, whereas in hibernators it can approach 0°C without triggering a thermogenic response. The remarkable plasticity of the thermoregulatory system allowed mammals to thrive in variable environmental conditions and occupy a wide range of geographical habitats, but the molecular basis of thermoregulation remains poorly understood. Here we leverage the thermoregulatory differences between mice and hibernating thirteen-lined ground squirrels (Ictidomys tridecemlineatus) to investigate the mechanism of cold sensitivity in the preoptic area (POA) of the hypothalamus, a critical thermoregulatory region. We report that, in comparison to squirrels, mice have a larger proportion of cold-sensitive neurons in the POA. We further show that mouse cold-sensitive neurons express the cyclic nucleotide-gated ion channel CNGA3, and that mouse, but not squirrel, CNGA3 is potentiated by cold. Our data reveal CNGA3 as a hypothalamic cold sensor and a molecular marker to interrogate the neuronal circuitry underlying thermoregulation. 
    more » « less
  2. Hibernation is a highly seasonal physiological adaptation that allows brown bears (Ursus arctos) to survive extended periods of low food availability. Similarly, daily or circadian rhythms conserve energy by coordinating body processes to optimally match the environmental light/dark cycle. Brown bears express circadian rhythms in vivo and their cells do invitro throughout the year, suggesting that these rhythms may play important roles during periods of negative energy balance. Here, we use time-series analysis of RNA sequencing data and timed measurements of ATP production in adipose-derived fibroblasts from active and hibernation seasons under two temperature conditions to confirm that rhythmicity was present. Culture temperature matching that of hibernation body temperature (34°C) resulted in a delay of daily peak ATP production in comparison with active season body temperatures (37°C). The timing of peaks of mitochondrial gene transcription was altered as were the amplitudes of transcripts coding for enzymes of the electron transport chain. Additionally, we observed changes in mean expression and timing of key metabolic genes such as SIRT1 and AMPK which are linked to the circadian system and energy balance. The amplitudes of several circadian gene transcripts were also reduced. These results reveal a link between energy conservation and a functioning circadian system in hibernation 
    more » « less
  3. Body size is often hypothesized to facilitate or constrain morphological diversity in the cranial, appendicular, and axial skeletons. However, how overall body shape scales with body size ( i.e. , body shape allometry) and whether these scaling patterns differ between ecological groups remains poorly investigated. Here, we test whether and how the relationships between body shape, body size, and limb lengths differ among species with different locomotor specializations, and describe the underlying morphological components that contribute to body shape evolution among squirrel (Sciuridae) ecotypes. We quantified the body size and shape of 87 squirrel species from osteological specimens held at museum collections. Using phylogenetic comparative methods, we first found that body shape and its underlying morphological components scale allometrically with body size, but these allometric patterns differ among squirrel ecotypes: chipmunks and gliding squirrels exhibited more elongate bodies with increasing body sizes whereas ground squirrels exhibited more robust bodies with increasing body size. Second, we found that only ground squirrels exhibit a relationship between forelimb length and body shape, where more elongate species exhibit relatively shorter forelimbs. Third, we found that the relative length of the ribs and elongation or shortening of the thoracic region contributes the most to body shape evolution across squirrels. Overall, our work contributes to the growing understanding of mammalian body shape evolution and how it is influenced by body size and locomotor ecology, in this case from robust subterranean to gracile gliding squirrels. 
    more » « less
  4. Abstract Hibernation is widespread among mammals in a variety of environmental contexts. However, few experimental studies consider interspecific comparisons, which may provide insight into general patterns of hibernation strategies. We studied 13 species of free-living bats, including populations spread over thousands of kilometers and diverse habitats. We measured torpid metabolic rate (TMR) and evaporative water loss (two key parameters for understanding hibernation energetics) across a range of temperatures. There was no difference in minimum TMR among species (i.e., all species achieved similarly low torpid metabolic rate) but the temperature associated with minimum TMR varied among species. The minimum defended temperature (temperature below which TMR increased) varied from 8 °C to < 2 °C among species. Conversely, evaporative water loss varied among species, with species clustered in two groups representing high and low evaporative water loss. Notably, species that have suffered population declines due to white-nose syndrome fall in the high evaporative water loss group and less affected species in the low evaporative water loss group. Documenting general patterns of physiological diversity, and associated ecological implications, contributes to broader understanding of biodiversity, and may help predict which species are at greater risk of environmental and anthropogenic stressors. 
    more » « less
  5. null (Ed.)
    Thriving in times of resource scarcity requires an incredible flexibility of behavioral, physiological, cellular, and molecular functions that must change within a relatively short time. Hibernation is a collection of physiological strategies that allows animals to inhabit inhospitable environments, where they experience extreme thermal challenges and scarcity of food and water. Many different kinds of animals employ hibernation, and there is a spectrum of hibernation phenotypes. Here, we focus on obligatory mammalian hibernators to identify the unique challenges they face and the adaptations that allow hibernators to overcome them. This includes the cellular and molecular strategies used to combat low environmental and body temperatures and lack of food and water. We discuss metabolic, neuronal, and hormonal cues that regulate hibernation and how they are thought to be coordinated by internal clocks. Last, we touch on questions that are left to be addressed in the field of hibernation research. Studies from the last century and more recent work reveal that hibernation is not simply a passive reduction in body temperature and vital parameters but rather an active process seasonally regulated at the molecular, cellular, and organismal levels. 
    more » « less