skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 30, 2026

Title: Model-assisted calibration estimation using generalized entropy calibration in survey sampling
Award ID(s):
2242820
PAR ID:
10612184
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Statistics Canada
Date Published:
Journal Name:
Survey Methodology
ISSN:
1492-0921
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As AI use becomes more common, it's important to measure not just whether the systems are correct but whether they know when they're incorrect. We propose a new metric to measure this mismatch between correctness and confidence, compare computer ability with human ability, and show that computers have a long way to go before they're well-calibrated. 
    more » « less
  2. We study calibration measures in a sequential prediction setup. In addition to rewarding accurate predictions (completeness) and penalizing incorrect ones (soundness), an important desideratum of calibration measures is truthfulness, a minimal condition for the forecaster not to be incentivized to exploit the system. Formally, a calibration measure is truthful if the forecaster (approximately) minimizes the expected penalty by predicting the conditional expectation of the next outcome, given the prior distribution of outcomes. We conduct a taxonomy of existing calibration measures. Perhaps surprisingly, all of them are far from being truthful. We introduce a new calibration measure termed the Subsampled Smooth Calibration Error (SSCE), which is complete and sound, and under which truthful prediction is optimal up to a constant multiplicative factor. In contrast, under existing calibration measures, there are simple distributions on which a polylogarithmic (or even zero) penalty is achievable, while truthful prediction leads to a polynomial penalty. 
    more » « less