The hearing abilities of mammals are impacted by factors such as social cues, habitat, and physical characteristics. Despite being used commonly to study social behaviors, hearing of the monogamous prairie vole (Microtus ochrogaster) has never been characterized. In this study, anatomical features are measured and auditory brainstem responses (ABRs) are used to measure auditory capabilities of prairie voles, characterizing monaural and binaural hearing and hearing range. Sexually naive male and female voles were measured to characterize differences due to sex. It was found that prairie voles show a hearing range with greatest sensitivity between 8 and 32 kHz, binaural hearing across interaural time difference ranges appropriate for their head sizes. No differences are shown between the sexes in binaural hearing or hearing range (except at 1 kHz), however, female voles have increased amplitude of peripheral ABR waves I and II and longer latency of waves III and IV compared to males. The results confirm that prairie voles have a broad hearing range, binaural hearing consistent with rodents of similar size, and differences in amplitudes and thresholds of monaural physiological measures between the sexes. These data further highlight the necessity to understand sex-specific differences in neural processing that may underly variability in responses between sexes.
more »
« less
This content will become publicly available on July 2, 2026
Variation in head and pinna morphology of preserved Peromyscus spp. specimens and implications for auditory function
Abstract The physical characteristics of an animal's head and pinna mark the beginning of auditory communication. Auditory communication is broadly achieved by receiving sounds from the environment and plays a vital role in an animal's ability to perceive and localize sounds. Natural history museums and collections, along with their vast repositories of specimens, provide a unique resource for examining how the variability in both the size and shape of the head and pinna causes variability in the detection of acoustic signals across species. Using this approach, we measured morphological features of the head and pinna on over 1200 preserved specimens ofPeromyscus boylii,P. californicus,P. gossypinus,P. leucopus,P. maniculatus, andP. truei, followed by a series of head‐related transfer functions (HRTFs) on several individuals to study the relationship between morphology and available auditory information. Our morphological results show significant variation in pinna length and width, as well as in the distance between the two ears across the six species. Interaural time differences and interaural level differences were calculated and demonstrated consistent results across species, suggesting the differences in head and pinna size do not significantly modify these cues. Not only does this study contribute to existing research on external morphology and auditory function, but it also provides valuable insight into the use of preserved zoological specimens in auditory research, an area that is currently understudied.
more »
« less
- Award ID(s):
- 2216648
- PAR ID:
- 10612188
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Anatomy
- Volume:
- 247
- Issue:
- 6
- ISSN:
- 0021-8782
- Format(s):
- Medium: X Size: p. 1241-1252
- Size(s):
- p. 1241-1252
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Proterozoic eukaryotic macroalgae are difficult to interpret because morphological details required for proper phylogenetic studies are rarely preserved. This is especially true of morphologically simple organisms consisting of tubes, ribbons, or spheres that are commonly found in a wide array of bacteria, plants, and even animals. Previous reports of exceptionally preserved Tonian (ca. 950−900 Ma) fossils from the Dolores Creek Formation of Northwestern Canada feature enough morphological evidence to support a green macroalgal affinity. However, the affinities of two additional forms identified on the basis of the size distribution of available specimens remain undetermined, while the presence of three unique algal forms supports other reports of increasing algal diversity in the early Neoproterozoic.Archaeochaeta gunchonew genus new species is described as a green macroalga on the basis of its well-preserved morphology consisting of an unbranching, uniseriate thallus with uniform width throughout and possessing an elliptical to globose anchoring holdfast. A larger size class of ribbon-like forms is interpreted asVendotaeniasp. A third size class is significantly smaller thanArchaeochaetan. gen. andVendotaenia,but in the absence of clear morphological characters, it remains difficult to assign. AsArchaeochaetan. gen. andVendotaeniarepresent photoautotrophic taxa, these findings support the hypothesis of increasing morphological complexity and phyletic diversification of macroalgae during the Tonian, leading to dramatic changes within benthic marine ecosystems before the evolution of animals.more » « less
-
A high degree of morphological variability is expressed between the ornately sculptured siliceous scales formed by species in the chrysophycean genus,Synura. In this study, we aimed to uncover the general principles and trends underlying the evolution of scale morphology in this genus. We assessed the relationships among thirty extantSynuraspecies using a robust molecular analysis that included six genes, coupled with morphological characterization of the species‐specific scales. The analysis was further enriched with addition of morphological information from fossil specimens and by including the unique modern species,Synura punctulosa. We inferred the phylogenetic position of the morphologically uniqueS. punctulosa, to be an ancientSynuralineage related toS. splendidain the sectionCurtispinae. Some morphological traits, including development of a keel or a labyrinth ribbing pattern on the scale, appeared once in evolution, whereas other structures, such as a hexagonal meshwork pattern, originated independently several times over geologic time. We further uncovered numerous construction principles governing scale morphology and evolution, as follows: (i) scale roundness and pore diameter decreased during evolution; (ii) elongated scales became strengthened by a higher number of struts or ribs; (iii) as a consequence of scale biogenesis, scales with spines possessed smaller basal holes than scales with a keel and; and (iv) the keel area was proportional to scale area, indicating its potential value in strengthening the scale against breakage.more » « less
-
Ichthyornishas long been recognized as a pivotally important fossil taxon for understanding the latest stages of the dinosaur–bird transition, but little significant new postcranial material has been brought to light since initial descriptions of partial skeletons in the 19thCentury. Here, we present new information on the postcranial morphology ofIchthyornisfrom 40 previously undescribed specimens, providing the most complete morphological assessment of the postcranial skeleton ofIchthyornisto date. The new material includes four partially complete skeletons and numerous well-preserved isolated elements, enabling new anatomical observations such as muscle attachments previously undescribed for Mesozoic euornitheans. Among the elements that were previously unknown or poorly represented forIchthyornis, the new specimens include an almost-complete axial series, a hypocleideum-bearing furcula, radial carpal bones, fibulae, a complete tarsometatarsus bearing a rudimentary hypotarsus, and one of the first-known nearly complete three-dimensional sterna from a Mesozoic avialan. Several pedal phalanges are preserved, revealing a remarkably enlarged pes presumably related to foot-propelled swimming. Although diagnosable asIchthyornis, the new specimens exhibit a substantial degree of morphological variation, some of which may relate to ontogenetic changes. Phylogenetic analyses incorporating our new data and employing alternative morphological datasets recoverIchthyornisstemward of Hesperornithes andIaceornis, in line with some recent hypotheses regarding the topology of the crownward-most portion of the avian stem group, and we establish phylogenetically-defined clade names for relevant avialan subclades to help facilitate consistent discourse in future work. The new information provided by these specimens improves our understanding of morphological evolution among the crownward-most non-neornithine avialans immediately preceding the origin of crown group birds.more » « less
-
Patterns of morphological divergence across species’ ranges can provide insight into local adaptation and speciation. In this study, we compared phenotypic divergence among 4,221 crickets from 337 populations of two closely related species of field cricket,Gryllus firmusandG. pennsylvanicus, and their hybrids. We found that these species differ across their geographic range in key morphological traits, such as body size and ovipositor length, and we directly compared phenotype with genotype for a subset of crickets to demonstrate nuclear genetic introgression, phenotypic intermediacy of hybrids, and essentially unidirectional mitochondrial introgression. We discuss how these morphological traits relate to life history differences between the two species. Our comparisons across geographic areas support prior research suggesting that cryptic variation withinG. firmusmay represent different species. Our study highlights how variable morphology can be across wide-ranging species and the importance of studying reproductive barriers in more than one or two transects of a hybrid zone.more » « less
An official website of the United States government
