skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Developing Soil Internal Erosion Indicator to Quantify Soil Internal Erosion around Defective Buried Pipes under Water Exfiltration
Award ID(s):
2451951
PAR ID:
10612301
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ASTM
Date Published:
Journal Name:
Geotechnical Testing Journal
ISSN:
0149-6115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Internal soil erosion caused by water infiltration around defective buried pipes poses a significant threat to the long-term stability of underground infrastructures such as pipelines and highway culverts. This study employs a coupled computational fluid dynamics–discrete element method (CFD–DEM) framework to simulate the detachment, transport, and redistribution of soil particles under varying infiltration pressures and pipe defect geometries. Using ANSYS Fluent (CFD) and Rocky (DEM), the simulation resolves both the fluid flow field and granular particle dynamics, capturing erosion cavity formation, void evolution, and soil particle transport in three dimensions. The results reveal that increased infiltration pressure and defect size in the buried pipe significantly accelerate the process of erosion and sinkhole formation, leading to potentially unstable subsurface conditions. Visualization of particle migration, sinkhole development, and soil velocity distributions provides insight into the mechanisms driving localized failure. The findings highlight the importance of considering fluid–particle interactions and defect characteristics in the design and maintenance of buried structures, offering a predictive basis for assessing erosion risk and infrastructure vulnerability. 
    more » « less
  2. Phosphorus (P) is an essential nutrient for life. Deficits in soil P reduce primary production and alter biodiversity. A soil P paradigm based on studies of soils that form on flat topography, where erosion rates are minimal, indicates P is supplied to soil mainly as apatite from the underlying parent material and over time is lost via weathering or transformed into labile and less-bioavailable secondary forms. However, little is systematically known about P transformation and bioavailability on eroding hillslopes, which make up the majority of Earth's surface. By linking soil residence time to P fractions in soils and parent material, we show that the traditional concept of P transformation as a function of time has limited applicability to hillslope soils of the western Southern Alps (New Zealand) and Northern Sierra Nevada (USA). Instead, the P inventory of eroding soils at these sites is dominated by secondary P forms across a range of soil residence times, an observation consistent with previously published soil P data. The findings for hillslope soils contrast with those from minimally eroding soils used in chronosequence studies, where the soil P paradigm originated, because chronosequences are often located on landforms where parent materials are less chemically altered and therefore richer in apatite P compared to soils on hillslopes, which are generally underlain by pre-weathered parent material (e.g., saprolite). The geomorphic history of the soil parent material is the likely cause of soil P inventory differences for eroding hillslope soils versus geomorphically stable chronosequence soils. Additionally, plants and dust seem to play an important role in vertically redistributing P in hillslope soils. Given the dominance of secondary soil P in hillslope soils, limits to ecosystem development caused by an undersupply of bio-available P may be more relevant to hillslopes than previously thought. 
    more » « less
  3. Erosion of productive topsoil leads to declining crop yields in claypan regions of the United States, and contributes to nonpoint source water contamination globally. Crop rooting structures may help prevent topsoil erosion, and different rooting structures may vary in their effectiveness for mitigating erosion. In this study the impact of different crop rooting structures on soil erodability of claypan soils was evaluated for two different cover crops (sorghum and pearl millet) and one cash crop (corn) 
    more » « less
  4. Rathje, Ellen; Montoya, Brina M.; Wayne, Mark H. (Ed.)
    Soil piping is the gradual and progressive erosion of soil grains, causing a void (open pipe) to form as water flows through the soil. In dam engineering, this type of internal erosion is often referred to as concentrated leak erosion and has been a cause of failure at multiple dams. Soil piping has also been observed in many landslides and contributes significantly to soil degradation in hillslopes and agricultural areas. Despite these many important impacts, there is still limited understanding of how soil pipes develop and progress and what factors control pipe stability. One of the significant challenges with analyzing soil piping, or concentrated leak erosion, is that it typically occurs in the vadose zone, where unsaturated conditions are present. However, most studies examining internal erosion have focused on saturated conditions, and few studies have examined the role unsaturated hydraulic properties (i.e., air entry value, matric suction, etc.) may play in the likelihood of internal erosion. Consequently, this study aims to explore the mechanisms controlling the erosion rate within soil pipes from the perspective of unsaturated soil mechanics. Bench-scale experiments were performed to examine the formation and progression of an eroded pipe in a small slope constructed at different water contents. Soil samples were also tested to measure its unsaturated hydraulic properties. The results show that the likelihood of pipe formation varies with the moisture content and, therefore, suction in the soil, as does the potential for pipe collapse. This demonstrates that unsaturated soil properties are key to understanding the formation and progression of piping in slopes. 
    more » « less