Abstract S/N crosstalk species derived from the interconnected reactivity of H2S and NO facilitate the transport of reactive sulfur and nitrogen species in signaling, transport, and regulatory processes. We report here that simple Fe2+ions, such as those that are bioavailable in the labile iron pool (LIP), react with thionitrite (SNO−) and perthionitrite (SSNO−) to yield the dinitrosyl iron complex [Fe(NO)2(S5)]−. In the reaction of FeCl2with SNO−we were able to isolate the unstable intermediate hydrosulfido mononitrosyl iron complex [FeCl2(NO)(SH)]−, which was characterized by X‐ray crystallography. We also show that [Fe(NO)2(S5)]−is a simple synthon for nitrosylated Fe−S clusters via its reduction with PPh3to yield Roussin's Red Salt ([Fe2S2(NO)4]2−), which highlights the role of S/N crosstalk species in the assembly of fundamental Fe−S motifs.
more »
« less
Yeast Mitochondria Import Aqueous Fe II and, When Activated for Iron–Sulfur Cluster Assembly, Export or Release Low-Molecular-Mass Iron and Also Export Iron That Incorporates into Cytosolic Proteins
- Award ID(s):
- 1949893
- PAR ID:
- 10612323
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- Volume:
- 145
- Issue:
- 25
- ISSN:
- 0002-7863
- Page Range / eLocation ID:
- 13556 to 13569
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Distributions of the natural radionuclide210Po and its grandparent210Pb along the GP15 Pacific Meridional Transect provide information on scavenging rates of reactive chemical species throughout the water column and fluxes of particulate organic carbon (POC) from the primary production zone (PPZ).210Pb is in excess of its grandparent226Ra in the upper 400–700 m due to the atmospheric flux of210Pb. Mid‐water210Pb/226Ra activity ratios are close to radioactive equilibrium (1.0) north of ∼20°N, indicating slow scavenging, but deficiencies at stations near and south of the equator suggest more rapid scavenging associated with a “particle veil” located at the equator and hydrothermal processes at the East Pacific Rise. Scavenging of210Pb and210Po is evident in the bottom 500–1,000 m at most stations due to enhanced removal in the nepheloid layer. Deficits in the PPZ of210Po (relative to210Pb) and210Pb (relative to226Ra decay and the210Pb atmospheric flux), together with POC concentrations and particulate210Po and210Pb activities, are used to calculate export fluxes of POC from the PPZ.210Po‐derived POC fluxes on large (>51 μm) particles range from 15.5 ± 1.3 mmol C/m2/d to 1.5 ± 0.2 mmol C/m2/d and are highest in the Subarctic North Pacific;210Pb‐derived fluxes range from 6.7 ± 1.8 mmol C/m2/d to 0.2 ± 0.1 mmol C/m2/d. Both210Po‐ and210Pb‐derived POC fluxes are greater than those calculated using the234Th proxy, possibly due to different integration times of the radionuclides, considering their different radioactive mean‐lives and scavenging mean residence times.more » « less
-
The iron-catalyzed C(sp 2 )–C(sp 3 ) cross-coupling provides a highly economical route to exceedingly valuable alkylated arenes that are widespread in medicinal chemistry and materials science. Herein, we report an operationally-simple protocol for the selective C(sp 2 )–C(sp 3 ) iron-catalyzed cross-coupling of aryl chlorides with Grignard reagents at low catalyst loading. A broad range of electronically-varied aryl and heteroaryl chlorides underwent the cross-coupling using challenging alkyl organometallics possessing β-hydrogens with high efficiency up to 2000 TON. A notable feature of the protocol is the use of environmentally-friendly cyclic urea ligands. A series of guidelines to predict cross-coupling reactivity of aryl electrophiles is provided.more » « less
-
Here we shed light on two mechanisms that stimulate deep particle export via upper-ocean iron fertilization in the Southern Ocean: deep frontal mixing and melting of sea ice. We present data collected a decade apart in the Pacific sector of the Southern Ocean when, serendipitously, seasonal Antarctic ice melt was anomalously low (2008) and anomalously high (2017). In 2008, the low ice melt year, we concluded that vertical mixing of iron into the euphotic zone via deep-mixing fronts was the primary stimulant of export that reached depths of ~1500 meters. This process was evidenced by localized enhancements of dissolved organic carbon (DOC) concentrations up to 4 µmol C kg -1 beneath seven branches of fronts embedded within the Antarctic Circumpolar Current (ACC). We used these enhanced DOC concentrations in the bathypelagic as primary indications of the depths and locations of recent export, as it is a logical residue of such. In 2017, the year in which sea ice melt was anomalously high, we concluded that the main driver of a widespread export event to the seafloor was the lateral influx of iron within the melt. Indications of this event included substantial enhancements of DOC concentrations (2 - 6 µmol C kg -1 ), elevated beam attenuation, and enhanced surface iron concentrations associated with a layer of low salinity water at a nearby station. Further, significant deficits of upper ocean silicic acid during the 2017 occupation indicated that deep export was likely stimulated by an iron-fueled diatom bloom. This analysis highlights the impact of iron supplied from frontal vertical mixing and sea ice melt on export and ultimately for long-term carbon sequestration in the Southern Ocean, as well as the utility of deep DOC enrichments as signatures of particle export. Understanding the impact that ice melt events have on carbon export is crucial given that anomalous events are occurring more often as our climate changes.more » « less
-
Abstract Iron is an essential micronutrient for phytoplankton and plays an integral role in the marine carbon cycle. The supply and bioavailability of iron are therefore important modulators of climate over glacial-interglacial cycles. Inputs of iron from the Antarctic continental shelf alleviate iron limitation in the Southern Ocean, driving hotspots of productivity. Glacial meltwater fluxes can deliver high volumes of particulate iron. Here, we show that glacier meltwater provides particles rich in iron(II) to the Antarctic shelf surface ocean. Particulate iron(II) is understood to be more bioavailable to phytoplankton, but less stable in oxic seawater, than iron(III). Using x-ray microscopy, we demonstrate co-occurrence of iron and organic carbon-rich phases, suggesting that organic carbon retards the oxidation of potentially-bioavailable iron(II) in oxic seawater. Accelerating meltwater fluxes may provide an increasingly important source of bioavailable iron(II)-rich particles to the Antarctic surface ocean, with implications for the Southern Ocean carbon pump and ecosystem productivity.more » « less
An official website of the United States government

