We present oxygen isotope and charcoal accumulation records from two lakes in eastern Washington that have sufficient temporal resolution to quantitatively compare with tree‐ring records and meteorological data. Hydroclimate reconstructions from tree‐rings and lake sediments show close correspondence after accounting for seasonal‐ to centennial‐ scale temporal sensitivities. Carbonate δ18O measurements from Castor and Round lakes reveal that the Medieval Climate Anomaly (MCA) experienced wetter November‐March conditions than the Little Ice Age (LIA). Charcoal records from Castor, Round, and nearby lakes show elevated fire activity during the LIA compared to the MCA. Increased multidecadal hydroclimate variability after 1250 CE is evident in proxy records throughout western North America. In the Upper Columbia River Basin, multidecadal wet periods during the LIA may have enhanced fuel loads that burned in subsequent dry periods. A notable decline in biomass burning occurred with Euro‐American settlement in the late nineteenth century. 
                        more » 
                        « less   
                    This content will become publicly available on April 3, 2026
                            
                            Phytolith and macrocharcoal records from Lake Tanganyika (Africa) reveal high-frequency shifts in savanna ecosystem states during the Common Era
                        
                    
    
            Building resilience to climate change in the Afrotropics hinges on accurately predicting the style and tempo of ecosystem responses. Paleoecological records offer valuable insights into vegetation dynamics, yet high-resolution data sets remain scarce in Africa. Here, we present a new radiocarbon-dated sediment core from Lake Tanganyika, capturing terrestrial ecosystem responses to hydroclimate variability and fire activity during the Common Era. Phytolith and macrocharcoal records reveal oscillations between grasslands and woodlands in the Zambezian miombo region, transitioning from “stable” to “unstable” states depending on fire disturbance levels. The expansion of grasslands was facilitated by reduced precipitation, increased fire activity, and ecosystem interactions. Our data sets provide new constraints regarding the timing and landscape responses within the Lake Tanganyika watershed to global hydroclimate changes, including the relatively dry Medieval climate anomaly (ca. 1000−1250 CE) and the two phases of the Little Ice Age. Cold and wet conditions, which favored tree encroachment, prevailed during the “early” Little Ice Age (ca. 1250−1530 CE), whereas drier conditions coupled with increased fire activity during the “main” Little Ice Age (ca. 1530−1850 CE) promoted the expansion of open grasslands. Significant changes in grassland-woodland communities were driven and modulated by hydroclimate and rapid ecosystem feedbacks. Fire activity served as both a disruptive force, facilitating the opening of landscapes and restricting the encroachment of trees, and a steadying control that promoted a grassland “stable state” in the tropical savannas surrounding Lake Tanganyika. Understanding shifting vegetation patterns throughout the Common Era offers valuable insights for developing biodiversity conservation strategies, sustainable land-use practices, and the maintenance of ecosystem services provided by miombo woodlands for millions of rural poor in the Lake Tanganyika basin. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2224886
- PAR ID:
- 10612353
- Publisher / Repository:
- Geological Society of America
- Date Published:
- Journal Name:
- Geological Society of America Bulletin
- ISSN:
- 0016-7606
- Subject(s) / Keyword(s):
- Paleolimnology
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Temperate broadleaf forests in eastern North America are diverse ecosystems whose vegetation composition has shifted over the last several millennia in response to climatic and human drivers. Yet, detailed records of long-term changes in vegetation composition and diversity in response to known periods of human activity, particularly multiple distinct periods of human activity at the same site, are still relatively sparse. In this study, we examine a sediment record from Avery Lake, Illinois, USA, using multiple metrics derived from pollen data to infer vegetation composition and diversity over the last 3,000 years. This 3,000-year history encompasses the Baumer (300 BCE–300 CE) and Mississippian settlements (1150–1450 CE) at Kincaid Mounds (adjacent to Avery Lake), and captures differences in the impact that these groups had on vegetation composition. Both groups actively cleared the local landscape for settlement and horticultural/agricultural purposes. Given the persistence of fire-tolerant Quercus in conjunction with declines in other tree taxa, this clearing likely occurred through the use of fire. We also apply a self-organized mapping technique to the multivariate pollen assemblages to identify similarities and differences in vegetation composition across time. Those results suggest that the vegetation surrounding Avery Lake was compositionally similar before and after the Baumer settlement, but compositionally different after the Mississippian settlement. The end of the Mississippian settlement occurred simultaneously with a regional shift in moisture characterized by drier summers and wetter winters associated with the Little Ice Age (1250–1850 CE), which likely prevented this ecosystem from returning to its pre-Mississippian composition.more » « less
- 
            Middle and Late Holocene sediments have not been extensively sampled in Lake Tanganyika, and much remains unknown about the response of the Rift Valley’s largest lake to major environmental shifts during the Holocene, including the termination of the African Humid Period (AHP). Here, we present an integrated study (sedimentology, mineralogy, and geochemistry) of a radiocarbon-dated sediment core from the Kavala Island Ridge (KIR) that reveals paleoenvironmental variability in Lake Tanganyika since the Middle Holocene with decadal to centennial resolution. Massive blue-gray sandy silts represent sediments deposited during the terminal AHP (~5880–4640 cal yr BP), with detrital particle size, carbon concentrations, light stable isotopes, and mineralogy suggesting an influx of river-borne soil organic matter and weathered clay minerals to the lake at that time. Enhanced by the AHP’s warm and wet conditions, chemical weathering and erosion of Lake Tanganyika’s watershed appears to have promoted considerable nutrient recharge to the lake system. Following a relatively gradual termination of the AHP over the period from ~4640 cal yr BP to ~3680 cal yr BP, laminated and organic carbon-rich sediments began accumulating on the KIR. δ15Nbulk, C/N, and hydrogen index data suggest high relative primary production from a mix of algae and cyanobacteria, most likely in response to nutrient availability in the water column under a cooler and seasonally dry climate from ~3680 to 1100 cal yr BP. Sediments deposited during the Common Era show considerable variability in magnetic susceptibility, total organic carbon content, carbon isotopes, and C/N, consistent with dynamic hydroclimate conditions that affected the depositional patterns, including substantial changes around the Medieval Climate Anomaly and Little Ice Age. Data from this study highlight the importance of sedimentary records to constrain boundary conditions in hydroclimate and nutrient flux that can inform long-term ecosystem response in Lake Tanganyika.more » « less
- 
            The Common Era history of effective moisture in the Central Andes is poorly understood, as most Andean proxy records reflect large-scale atmospheric circulation over the South American lowlands rather than localized precipitation vs. evaporation. Here we present 1800-year leaf wax hydrogen and carbon isotope sedimentary records from Lake Chacacocha (13.96°S, 71.08°W, 4,860 m asl.) in the Central Andes. Leaf wax δ2H from different chain lengths offers information about large-scale atmospheric conditions and local-scale effective moisture. Our leaf wax δ2H data record a gradual intensification of the South American summer monsoon (SASM) beginning around ~1250 CE, prior to the external forcings of the Little Ice Age (LIA). Despite peak SASM intensification, our leaf wax δ13C data reveal a locally arid interval between ca. 1600 and 1800 CE. The arid interval was most likely driven by enhanced evaporation and reduced local precipitation, as indicated by the hydrogen isotope fractionation between mid- and long-chain n-alkanes as well as by climate model simulations. Our results help to reconcile conflicting interpretations of the SASM, glacial, and lake-level histories in the Central Andes during the Common Era.more » « less
- 
            Abstract C4 grassland ecosystems expanded across North America between ca. 8 and 3 Ma. Studies of ungulate enamel and environmental indicators from the middle Miocene Barstow Formation of southern California (USA) have demonstrated the presence of C4 vegetation prior to the late Miocene expansion of C4 grasslands. Fire promotes the growth of modern C4 grasslands and may have contributed to the Miocene expansion of C4 vegetation. We analyzed the concentration and accumulation rate (CHAR) of microscopic charred particles from sediment samples spanning the Barstow Formation in order to investigate the relationship between fire activity, canopy cover, and the presence of C4 vegetation. Concentration and CHAR were low throughout the formation then increased dramatically at 13.5 Ma. Enriched values of δ13C from soil organic matter and phytolith counts indicate the presence of C4 grasses and seasonally dry, open-canopy habitats at this time. The spike in concentration coincides with climatic cooling and drying in southern California after the Miocene Climatic Optimum. Increased fire activity may have contributed to habitat opening from forest to woodland and promoted the spread of C4 plants. This is the first charcoal record of fire activity from the middle Miocene of southwestern North America.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
