Session types guarantee that message-passing processes adhere to predefined communication protocols. Prior work on session types has focused on deterministic languages but many message-passing systems, such as Markov chains and randomized distributed algorithms, are probabilistic. To implement and analyze such systems, this article develops the meta theory of probabilistic session types with an application focus on automatic expected resource analysis. Probabilistic session types describe probability distributions over messages and are a conservative extension of intuitionistic (binary) session types. To send on a probabilistic channel, processes have to utilize internal randomness from a probabilistic branching or external randomness from receiving on a probabilistic channel. The analysis for expected resource bounds is smoothly integrated with the type system and is a variant of automatic amortized resource analysis. Type inference relies on linear constraint solving to automatically derive symbolic bounds for various cost metrics. The technical contributions include the meta theory that is based on a novel nested multiverse semantics and a type-reconstruction algorithm that allows flexible mixing of different sources of randomness without burdening the programmer with complex type annotations. The type system has been implemented in the language NomosPro with linear-time type checking. Experiments demonstrate that NomosPro is applicable in different domains such as cost analysis of randomized distributed algorithms, analysis of Markov chains, probabilistic analysis of amortized data structures and digital contracts. NomosPro is also shown to be scalable by (i) implementing two broadcast and a bounded retransmission protocol where messages are dropped with a fixed probability, and (ii) verifying the limiting distribution of a Markov chain with 64 states and 420 transitions.
more »
« less
This content will become publicly available on June 10, 2026
Probabilistic Refinement Session Types
Session types provide a formal type system to define and verify communication protocols between message-passing processes. In order to analyze randomized systems, recent works have extended session types with probabilistic type constructors. Unfortunately, all the proposed extensions only support constant probabilities which limits their applicability to real-world systems. Our work addresses this limitation by introducing probabilistic refinement session types which enable symbolic reasoning for concurrent probabilistic systems in a core calculus we call PReST. The type system is carefully designed to be a conservative extension of refinement session types and supports both probabilistic and regular choice type operators. We also implement PReST in a prototype which we use for validating probabilistic concurrent programs. The added expressive power leads to significant challenges, both in the meta theory and implementation of PReST, particularly with type checking: it requires reconstructing intermediate types for channels when type checking probabilistic branching expressions. The theory handles this by semantically quantifying refinement variables in probabilistic typing rules, a deviation from standard refinement type systems. The implementation relies on a bi-directional type checker that uses an SMT solver to reconstruct the intermediate types minimizing annotation overhead and increasing usability. To guarantee that probabilistic processes are almost-surely terminating, we integrate cost analysis into our type system to obtain expected upper bounds on recursion depth. We evaluate PReST on a wide variety of benchmarks from 4 categories: (i) randomized distributed protocols such as Itai and Rodeh's leader election, bounded retransmission, etc., (ii) parametric Markov chains such as random walks, (iii) probabilistic analysis of concurrent data structures such as queues, and (iv) distributions obtained by composing uniform distributions using operators like max, and sum. Our experiments show that the PReST type checker scales to large programs with sophisticated probabilistic distributions.
more »
« less
- Award ID(s):
- 2314324
- PAR ID:
- 10612383
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the ACM on Programming Languages
- Volume:
- 9
- Issue:
- PLDI
- ISSN:
- 2475-1421
- Page Range / eLocation ID:
- 1666 to 1691
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We develop a session types based framework for implementing and validating rate-based message passing systems in Internet of Things (IoT) domains. To model the indefinite repetition present in many embedded and IoT systems, we introduce a timed process calculus with a periodic recursion primitive. This allows us to model rate-based computations and communications inherent to these application domains. We introduce a definition of rate based session types in a binary session types setting and a new compatibility relationship, which we call rate compatibility. Programs which type check enjoy the standard session types guarantees as well as rate error freedom --- meaning processes which exchanges messages do so at the same rate. Rate compatibility is defined through a new notion of type expansion, a relation that allows communication between processes of differing periods by synthesizing and checking a common superperiod type. We prove type preservation and rate error freedom for our system, and show a decidable method for type checking based on computing superperiods for a collection of processes. We implement a prototype of our type system including rate compatibility via an embedding into the native type system of Rust. We apply this framework to a range of examples from our target domain such as Android software sensors, wearable devices, and sound processing.more » « less
-
Probabilistic programming languages (PPLs) provide language support for expressing flexible probabilistic models and solving Bayesian inference problems. PPLs withprogrammable inferencemake it possible for users to obtain improved results by customizing inference engines usingguideprograms that are tailored to a correspondingmodelprogram. However, errors in guide programs can compromise the statistical soundness of the inference. This article introduces a novel coroutine-based framework for verifying the correctness of user-written guide programs for a broad class of Markov chain Monte Carlo (MCMC) inference algorithms. Our approach rests on a novel type system for describing communication protocols between a model program and a sequence of guides that each update only a subset of random variables. We prove that, by translating guide types to context-free processes with finite norms, it is possible to check structural type equality between models and guides in polynomial time. This connection gives rise to an efficienttype-inference algorithmfor probabilistic programs with flexible constructs such as general recursion and branching. We also contribute acoverage-checking algorithmthat verifies the support of sequentially composed guide programs agrees with that of the model program, which is a key soundness condition for MCMC inference with multiple guides. Evaluations on diverse benchmarks show that our type-inference and coverage-checking algorithms efficiently infer types and detect sound and unsound guides for programs that existing static analyses cannot handle.more » « less
-
Worst-case input generation aims to automatically generate inputs that exhibit the worst-case performance of programs. It has several applications, and can, for example, detect vulnerabilities to denial-of-service (DoS) attacks. However, it is non-trivial to generate worst-case inputs for concurrent programs, particularly for resources like memory where the peak cost depends on how processes are scheduled. This article presents the first sound worst-case input generation algorithm for concurrent programs under non-monotone resource metrics like memory. The key insight is to leverage resource-annotated session types and symbolic execution. Session types describe communication protocols on channels in process calculi. Equipped with resource annotations, resource-annotated session types not only encode cost bounds but also indicate how many resources can be reused and transferred between processes. This information is critical for identifying a worst-case execution path during symbolic execution. The algorithm is sound: if it returns any input, it is guaranteed to be a valid worst-case input. The algorithm is also relatively complete: as long as resource-annotated session types are sufficiently expressive and the background theory for SMT solving is decidable, a worst-case input is guaranteed to be returned. A simple case study of a web server's memory usage demonstrates the utility of the worst-case input generation algorithm.more » « less
-
Shared session types generalize the Curry-Howard correspondence between intuitionistic linear logic and the session-typed pi-calculus with adjoint modalities that mediate between linear and shared session types, giving rise to a programming model where shared channels must be used according to a locking discipline of acquire-release. While this generalization greatly increases the range of programs that can be written, the gain in expressiveness comes at the cost of deadlock-freedom, a property which holds for many linear session type systems. In this paper, we develop a type system for logically-shared sessions in which types capture not only the interactive behavior of processes but also constrain the order of resources (i.e., shared processes) they may acquire. This type-level information is then used to rule out cyclic dependencies among acquires and synchronization points, resulting in a system that ensures deadlock-free communication for well-typed processes in the presence of shared sessions, higher-order channel passing, and recursive processes. We illustrate our approach on a series of examples, showing that it rules out deadlocks in circular networks of both shared and linear recursive processes, while still being permissive enough to type concurrent implementations of shared imperative data structures as processes.more » « less
An official website of the United States government
