skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Needle in a Haystack: A Droplet Digital Polymerase Chain Reaction Assay to Detect Rare Helminth Parasites Infecting Natural Host Populations
ABSTRACT Helminths infect humans, livestock, and wildlife, yet remain understudied despite their significant impact on public health and agriculture. Because many of the most prevalent helminth‐borne diseases are zoonotic, understanding helminth transmission among wildlife could improve predictions and management of infection risks across species. A key challenge to understanding helminth transmission dynamics in wildlife is accurately and quantitatively tracking parasite load across hosts and environments. Traditional methods, such as visual parasite identification from environmental samples or infected hosts, are time‐consuming, while standard molecular techniques (e.g., PCR and qPCR) often lack the sensitivity to reliably detect lower parasite burdens. These limitations can underestimate the prevalence and severity of infection, hindering efforts to manage infectious diseases. Here, we developed a multiplexed droplet digital PCR (ddPCR) assay to quantify helminth loads in aquatic habitats using 18S rRNA target genes. UsingSchistocephalus solidusand their copepod hosts as a case study, we demonstrate ddPCR's sensitivity and precision. The assay is highly reproducible, reliably detecting target genes at concentrations as low as 1 pg of DNA in lab standards and field samples (multi‐species and eDNA). Thus, we provide a toolkit for quantifying parasite load in intermediate hosts and monitoring infection dynamics across spatio‐temporal scales in multiple helminth systems of concern for public health, agriculture, and conservation biology.  more » « less
Award ID(s):
2243076
PAR ID:
10612410
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Molecular Ecology Resources
ISSN:
1755-098X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Helminths are parasites that cause disease at considerable cost to public health and present a risk for emergence as novel human infections. Although recent research has elucidated characteristics conferring a propensity to emergence in other parasite groups (e.g. viruses), the understanding of factors associated with zoonotic potential in helminths remains poor. We applied an investigator-directed learning algorithm to a global dataset of mammal helminth traits to identify factors contributing to spillover of helminths from wild animal hosts into humans. We characterized parasite traits that distinguish between zoonotic and non-zoonotic species with 91% accuracy. Results suggest that helminth traits relating to transmission (e.g. definitive and intermediate hosts) and geography (e.g. distribution) are more important to discriminating zoonotic from non-zoonotic species than morphological or epidemiological traits. Whether or not a helminth causes infection in companion animals (cats and dogs) is the most important predictor of propensity to cause human infection. Finally, we identified helminth species with high modelled propensity to cause zoonosis (over 70%) that have not previously been considered to be of risk. This work highlights the importance of prioritizing studies on the transmission of helminths that infect pets and points to the risks incurred by close associations with these animals. This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’. 
    more » « less
  2. ABSTRACT Studying declining and rare species is inherently challenging, particularly when the cause of rarity is emerging infectious diseases (EIDs). Tracking changes in the distribution of pathogens that cause EIDs, and the species made scarce by them, is necessary for conservation efforts, but it is often a time and resource intensive task. Here, we demonstrate how using environmental DNA (eDNA) to detect rare species—and the pathogens that threaten them—can be a powerful tool to understand disease dynamics and develop effective conservation strategies. Amphibian populations around the world have undergone rapid declines and extinctions due to the emerging fungal pathogen,Batrachochytrium dendrobatidis(Bd). We developed and validated a qPCR assay using eDNA sampling methods for some of the most imperiled amphibian species, harlequin frogs (Atelopus varius,Atelopus zeteki,andAtelopus chiriquiensis), and applied this assay in concert with a standard qPCR assay forBdin rainforest streams of Panamá. We confirmed the presence ofAtelopusat sampling locations across three regions. In addition, we used genomic analysis of eDNA samples to show thatBdin Panamá falls within the Global Panzootic Lineage, a lineage associated with disease‐induced declines. We detectedBdDNA in most of our historic sites, and its concentration in water samples correlated with stream characteristics and the pathogen load of the local amphibian community. These results suggest that some populations ofAtelopuspersist in their historic localities. They also show how eDNA analysis can be effectively used for monitoring species presence, pathogen concentrations, and the distribution and spread of pathogen lineages. EIDs are a growing threat to endangered species around the world. Simultaneous detection of rare and declining host species and their pathogens with eDNA will help to provide key insights for effective conservation management. 
    more » « less
  3. ABSTRACT RNA viruses are infamous for their ability to cross species barriers, posing threats to global health and security. Influenza A virus (IAV) is naturally found in avian hosts but periodically spills over into marine wildlife. IAV outbreaks occur in the Northwest Atlantic, but grey seals (Halichoerus grypus) appear to be less susceptible to IAV compared to other species. The subclinical nature of IAV infection in addition to life history factors suggest grey seals are a potential wild reservoir host for IAV. We investigated differential gene expression among grey seals naturally exposed to IAV to elucidate genetic mechanisms involved in grey seal disease resistance. RNA sequencing was conducted on blood samples (N = 31) collected from grey seal pups in Massachusetts, US between 2014 and 2019. Samples were grouped for analysis based on presence/absence of viral RNA and antibodies. In the presence of IAV RNA, we observed widespread down‐regulation of genes, including immune genes, potentially as a result of IAV‐induced host shutoff. Immune down‐regulation occurred in acute stage of IAV infection (+ viral RNA, − antibodies), followed by up‐regulation of protein production in peak stage (+ viral RNA, + antibodies), possibly as a result of increased viral replication. Evidence of an activated immune response was observed in late stage of infection (− viral RNA, + antibodies) with up‐regulated adaptive immunity genes. We hypothesize that the combination of down‐ and up‐regulated immune gene expression may prevent overstimulation of the immune response, acting as an adaptation in grey seals to resist IAV‐associated mortality. 
    more » « less
  4. ABSTRACT Environmental conditions such as temperature and resource availability can shape disease transmission by altering contact rates and/or the probability of infection given contact. However, interactive effects of these factors on transmission processes remain poorly understood. We develop mechanistic models and fit them to experimental data to uncover how temperature and resources jointly affect transmission of fungal parasites (Metschnikowia bicuspidata) in zooplankton hosts (Daphnia dentifera). Model competition revealed interactive effects of temperature and resources on both contact rates (host foraging) and the probability of infection given contact (per‐parasite susceptibility). Foraging rates increased with temperature and decreased with resources (via type‐II functional response), but this resource effect weakened at warmer temperatures due to shorter handling times. Per‐parasite susceptibility increased with resources at cooler temperatures but remained consistently high when warmer. Our analysis demonstrates that temperature and resources interact to shape transmission processes and provides a general theoretical framework for other host–parasite systems. 
    more » « less
  5. Abstract Echinococcus multilocularisis a zoonotic cestode that uses canids as definitive hosts and rodents as intermediate hosts. In humans, this parasite is the causative agent of alveolar echinococcosis. Recently, its range has been expanding across the Northern Hemisphere, and it is increasingly detected in wild canids, domestic dogs, and humans across Canada and the United States. While this expansion has been documented in isolated studies across the continent, a lack of routine sampling in wildlife hinders our ability to anticipate and mitigate further spread ofE. multilocularis. We confirmed the presence ofE. multilocularisin Washington State, USA, using a combination of morphological and molecular techniques across carcasses and field-collected scats of coyotes (Canis latrans), this region’s most common wild canid. Morphological identification of adult worms was confirmed by next-generation sequencing. Over a third of all samples tested positive forE. multiloculariswhen all methodologies were combined. Sequencing revealed a haplotype ofE. multilocularismatching a documented haplotype originally of European origin in British Columbia, Canada. Our study provides the first confirmation ofE. multilocularisin a wild host on the west coast of the U.S and provides additional haplotype information crucial to tracking the geographical expansion of the parasite. We also provide a new next-generation sequencing primer targeting cestodes of canids. The difference in amplification between intestinal and fecal samples suggests that non-invasive fecal sampling using DNA metabarcoding—a popular method of helminth surveillance —may lead to underestimation of prevalence, hindering control measures. The global significance of these findings extends beyond North America;E. multilocularisis a major public health concern in Europe and Asia, where alveolar echinococcosis is increasingly diagnosed in humans. Our study highlights the urgent need for increased surveillance and improved diagnostic strategies worldwide, particularly in regions with significant human-wildlife contact. Author summaryParasites that are transmitted between wildlife, domestic animals, and people are an important part of global health. One such parasite isEchinococcus multilocularis, a small tapeworm of canids that can cause a severe, life-threatening disease in humans called alveolar echinococcosis. Many wild canid hosts of the parasite, such as coyotes, overlap significantly with domestic dogs, which facilitates transmission to humans. In Europe, Asia, and Arctic regions of North America,E. multilocularishas long been recognized as a major public health problem. In recent decades its range has expanded across the Northern Hemisphere, raising concern. In this study, we discoveredE. multilocularisin coyotes in a densely populated area of Washington State, USA — the first detection ofE. multilocularisin a wild host in the region. More than one-third of our coyote samples containedE. multilocularis, confirming that it is widespread in the area. Genetic testing showed that the strain we detected matched one previously found in Canada, originally from Europe. Our findings underscore the importance of monitoringE. multilocularisand other parasites in wildlife so that emerging public health threats can be detected early, reducing risk to people and pets. 
    more » « less