skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 8, 2026

Title: Large-scale geometry of pure mapping class groups of infinite-type surfaces
The work of Mann and Rafi [Geom. Topol. 27 (2023), pp. 2237–2296] gives a classification of surfaces Σ<#comment/> \Sigma when M a p ( Σ<#comment/> ) \mathrm {Map}(\Sigma ) is globally CB, locally CB, and CB generated under the technical assumption of tameness. In this article, we restrict our study to the pure mapping class group and give a complete classification without additional assumptions. In stark contrast with the rich class of examples of Mann–Rafi, we prove that P M a p ( Σ<#comment/> ) \mathrm {PMap}(\Sigma ) is globally CB if and only if Σ<#comment/> \Sigma is the Loch Ness monster surface, and locally CB or CB generated if and only if Σ<#comment/> \Sigma has finitely many ends and is not a Loch Ness monster surface with (nonzero) punctures.  more » « less
Award ID(s):
1840190
PAR ID:
10612423
Author(s) / Creator(s):
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Proceedings of the American Mathematical Society
ISSN:
0002-9939
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We show that every Borel graph G G of subexponential growth has a Borel proper edge-coloring with Δ<#comment/> ( G ) + 1 \Delta (G) + 1 colors. We deduce this from a stronger result, namely that an n n -vertex (finite) graph G G of subexponential growth can be properly edge-colored using Δ<#comment/> ( G ) + 1 \Delta (G) + 1 colors by an O ( log ∗<#comment/> ⁡<#comment/> n ) O(\log ^\ast n) -round deterministic distributed algorithm in theLOCALmodel, where the implied constants in the O ( ⋅<#comment/> ) O(\cdot ) notation are determined by a bound on the growth rate of G G
    more » « less
  2. We prove a single-value version of Reshetnyak’s theorem. Namely, if a non-constant map f W l o c 1 , n ( Ω , R n ) f \in W^{1,n}_{\mathrm {loc}}(\Omega , \mathbb {R}^n) from a domain Ω R n \Omega \subset \mathbb {R}^n satisfies the estimate | D f ( x ) | n K J f ( x ) + Σ ( x ) | f ( x ) y 0 | n \lvert Df(x) \rvert ^n \leq K J_f(x) + \Sigma (x) \lvert f(x) - y_0 \rvert ^n at almost every x Ω x \in \Omega for some K 1 K \geq 1 , y 0 R n y_0\in \mathbb {R}^n and Σ L l o c 1 + ε ( Ω ) \Sigma \in L^{1+\varepsilon }_{\mathrm {loc}}(\Omega ) , then f 1 { y 0 } f^{-1}\{y_0\} is discrete, the local index i ( x , f ) i(x, f) is positive in f 1 { y 0 } f^{-1}\{y_0\} , and every neighborhood of a point of f 1 { y 0 } f^{-1}\{y_0\} is mapped to a neighborhood of y 0 y_0 . Assuming this estimate for a fixed K K at every y 0 R n y_0 \in \mathbb {R}^n is equivalent to assuming that the map f f is K K -quasiregular, even if the choice of Σ \Sigma is different for each y 0 y_0 . Since the estimate also yields a single-value Liouville theorem, it hence appears to be a good pointwise definition of K K -quasiregularity. As a corollary of our single-value Reshetnyak’s theorem, we obtain a higher-dimensional version of the argument principle that played a key part in the solution to the Calderón problem. 
    more » « less
  3. We investigate a conjecture due to Haefliger and Thurston in the context of foliated manifold bundles. In this context, Haefliger-Thurston’s conjecture predicts that every M M -bundle over a manifold B B where dim ⁡<#comment/> ( B ) ≤<#comment/> dim ⁡<#comment/> ( M ) \operatorname {dim}(B)\leq \operatorname {dim}(M) is cobordant to a flat M M -bundle. In particular, we study the bordism class of flat M M -bundles over low dimensional manifolds, comparing a finite dimensional Lie group G G with D i f f 0 ( G ) \mathrm {Diff}_0(G)
    more » « less
  4. We study regularity of solutions u u to ∂<#comment/> ¯<#comment/> u = f \overline \partial u=f on a relatively compact C 2 C^2 domain D D in a complex manifold of dimension n n , where f f is a ( 0 , q ) (0,q) form. Assume that there are either ( q + 1 ) (q+1) negative or ( n −<#comment/> q ) (n-q) positive Levi eigenvalues at each point of boundary ∂<#comment/> D \partial D . Under the necessary condition that a locally L 2 L^2 solution exists on the domain, we show the existence of the solutions on the closure of the domain that gain 1 / 2 1/2 derivative when q = 1 q=1 and f f is in the Hölder–Zygmund space Λ<#comment/> r ( D ) \Lambda ^r( D) with r > 1 r>1 . For q > 1 q>1 , the same regularity for the solutions is achieved when ∂<#comment/> D \partial D is either sufficiently smooth or of ( n −<#comment/> q ) (n-q) positive Levi eigenvalues everywhere on ∂<#comment/> D \partial D
    more » « less
  5. In this article we study base change of Poincaré series along a quasi-complete intersection homomorphism φ<#comment/> :<#comment/> Q →<#comment/> R \varphi \colon Q \to R , where Q Q is a local ring with maximal ideal m \mathfrak {m} . In particular, we give a precise relationship between the Poincaré series P M Q ( t ) \mathrm {P}^Q_M(t) of a finitely generated R R -module M M to P M R ( t ) \mathrm {P}^R_M(t) when the kernel of φ<#comment/> \varphi is contained in m a n n Q ( M ) \mathfrak {m}\,\mathrm {ann}_Q(M) . This generalizes a classical result of Shamash for complete intersection homomorphisms. Our proof goes through base change formulas for Poincaré series under the map of dg algebras Q →<#comment/> E Q\to E , with E E the Koszul complex on a minimal set of generators for the kernel of φ<#comment/> \varphi
    more » « less