The standard approach to answering an identifiable causaleffect query (e.g., P(Y |do(X)) given a causal diagram and observational data is to first generate an estimand, or probabilistic expression over the observable variables, which is then evaluated using the observational data. In this paper, we propose an alternative paradigm for answering causal-effect queries over discrete observable variables. We propose to instead learn the causal Bayesian network and its confounding latent variables directly from the observational data. Then, efficient probabilistic graphical model (PGM) algorithms can be applied to the learned model to answer queries. Perhaps surprisingly, we show that this model completion learning approach can be more effective than estimand approaches, particularly for larger models in which the estimand expressions become computationally difficult. We illustrate our method’s potential using a benchmark collection of Bayesian networks and synthetically generated causal models 
                        more » 
                        « less   
                    This content will become publicly available on May 4, 2026
                            
                            Graph-based Complexity for Causal Effect by Empirical Plug-in
                        
                    
    
            This paper focuses on the computational complexity of computing empirical plug-in estimates for causal effect queries. Given a causal graph and observational data, any identifiable causal query can be estimated from an expression over the observed variables, called the estimand. The estimand can then be evaluated by plugging in probabilities computed empirically from data. In contrast to conventional wisdom which assumes that high dimensional probabilistic functions will lead to exponential evaluation time, we show that estimand evaluation can be done efficiently, potentially in time linear in the data size, depending on the estimand's hypergraph. In particular, we show that both the treewidth and hypertree width of the estimand's structure bound the evaluation complexity, analogous to their role in bounding the complexity of inference in probabilistic graphical models. In settings with high dimensional functions, the hypertree width often provides a more effective bound, since the empirical distributions are sparse. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2321786
- PAR ID:
- 10612522
- Publisher / Repository:
- Proceedings of the 28th International Conference on Artificial Intelligence and Statistics (AISTATS) 2025
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We study the dynamic query evaluation problem: Given a full conjunctive query Q and a sequence of updates to the input database, we construct a data structure that supports constant-delay enumeration of the tuples in the query output after each update. We show that a sequence of N insert-only updates to an initially empty database can be executed in total time O(Nw(Q)), where w(Q) is the fractional hypertree width of Q. This matches the complexity of the static query evaluation problem for Q and a database of size N. One corollary is that the amortized time per single-tuple insert is constant for acyclic full conjunctive queries. In contrast, we show that a sequence of N inserts and deletes can be executed in total time Õ(Nw(Q')), where Q' is obtained from Q by extending every relational atom with extra variables that represent the lifespans of tuples in the database. We show that this reduction is optimal in the sense that the static evaluation runtime of Q' provides a lower bound on the total update time for the output of Q. Our approach achieves amortized optimal update times for the hierarchical and Loomis-Whitney join queries.more » « less
- 
            We study off-policy evaluation and learning from sequential data in a structured class of Markov decision processes that arise from repeated interactions with an exogenous sequence of arrivals with contexts, which generate unknown individual-level responses to agent actions. This model can be thought of as an offline generalization of contextual bandits with resource constraints. We formalize the relevant causal structure of problems such as dynamic personalized pricing and other operations management problems in the presence of potentially high-dimensional user types. The key insight is that an individual-level response is often not causally affected by the state variable and can therefore easily be generalized across timesteps and states. When this is true, we study implications for (doubly robust) off-policy evaluation and learning by instead leveraging single time-step evaluation, estimating the expectation over a single arrival via data from a population, for fitted-value iteration in a marginal MDP. We study sample complexity and analyze error amplification that leads to the persistence, rather than attenuation, of confounding error over time. In simulations of dynamic and capacitated pricing, we show improved out-of-sample policy performance in this class of relevant problems.more » « less
- 
            Estimation of heterogeneous causal effects—that is, how effects of policies and treatments vary across subjects—is a fundamental task in causal inference. Many methods for estimating conditional average treatment effects (CATEs) have been proposed in recent years, but questions surrounding optimality have remained largely unanswered. In particular, a minimax theory of optimality has yet to be developed, with the minimax rate of convergence and construction of rate-optimal estimators remaining open problems. In this paper, we derive the minimax rate for CATE estimation, in a Hölder-smooth nonparametric model, and present a new local polynomial estimator, giving high-level conditions under which it is minimax optimal. Our minimax lower bound is derived via a localized version of the method of fuzzy hypotheses, combining lower bound constructions for nonparametric regression and functional estimation. Our proposed estimator can be viewed as a local polynomial R-Learner, based on a localized modification of higher-order influence function methods. The minimax rate we find exhibits several interesting features, including a nonstandard elbow phenomenon and an unusual interpolation between nonparametric regression and functional estimation rates. The latter quantifies how the CATE, as an estimand, can be viewed as a regression/functional hybrid.more » « less
- 
            null (Ed.)We consider the problem of finding lower bounds on the I/O complexity of arbitrary computations in a two level memory hierarchy. Executions of complex computations can be formalized as an evaluation order over the underlying computation graph. However, prior methods for finding I/O lower bounds leverage the graph structures for specific problems (e.g matrix multiplication) which cannot be applied to arbitrary graphs. In this paper, we first present a novel method to bound the I/O of any computation graph using the first few eigenvalues of the graph’s Laplacian. We further extend this bound to the parallel setting. This spectral bound is not only efficiently computable by power iteration, but can also be computed in closed form for graphs with known spectra. We apply our spectral method to compute closed-form analytical bounds on two computation graphs (the Bellman-Held-Karp algorithm for the traveling salesman problem and the Fast Fourier Transform), as well as provide a probabilistic bound for random Erdős Rényi graphs. We empirically validate our bound on four computation graphs, and find that our method provides tighter bounds than current empirical methods and behaves similarly to previously published I/O bounds.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
