Butterfield Lake is a mesotrophic lake in New York State where residents and pets have experienced unexplained health issues. Microseira wollei (basionym Lyngbya wollei) was found at two of 15 sites in Butterfield Lake and analyzed for microcystins, anatoxins, cylindrospermopsins, and paralytic shellfish poisoning toxins (PSTs). Only PSTs and trace levels of anatoxin-a were detected in these samples. This is the first published report of PSTs within a New York State lake. To evaluate the environmental and temporal drivers leading to the observed toxicity, PST content at the two sites was examined in detail. There were distinct differences in the total PST content, filament nutrient, filament chlorophyll, and relationship to environmental drivers between the sites, as well as distinct differences in the total PST content measured using different analytical techniques. A multivariate model containing site, temperature, and filament chlorophyll explained 85% of the variation in PSTs observed over the growing season. This work emphasizes the importance of proper site selection and choice of analytical technique in the development of monitoring programs to protect lake users from the occurrence of benthic cyanobacteria toxins.
more »
« less
Clam Size Explains Some Variability in Paralytic Shellfish Toxin Concentrations in Butter Clams (Saxidomus gigantea) in Southeast Alaska
Harmful algal blooms (HABs) are a reoccurring threat to subsistence and recreational shellfish harvest in Southeast Alaska. Recent Tribally led monitoring programs have enhanced understanding of the environmental drivers and toxicokinetics of shellfish toxins in the region; however, there is considerable variability in shellfish toxins in some species, which cannot be easily explained by seasonal bloom dynamics. Persistent concentrations of paralytic shellfish toxins (PSTs) in homogenized butter clam samples (n > 6, Saxidomus gigantea) have been observed in several communities, and relatively large spikes in concentrations are sometimes seen without Alexandrium observations or increased toxin concentrations in other species. In order to investigate potential sources of variability in PST concentrations from this subsistence species, we assessed individual concentrations of PSTs across a size gradient of butter clams during a period of relatively stable PST concentrations. We found that increasing concentrations of PSTs were significantly associated with larger clams using a log-linear model. We then simulated six clams randomly sampled from three size distributions, and we determined large clams had an outsized probability of contributing a significant proportion of the total toxicity in a six-clam homogenized sample. While our results were obtained during a period of low HAB activity and cannot be extrapolated to periods of intoxication or rapid detoxification, they have significant ramifications for both monitoring programs as well as subsistence and recreational harvesters.
more »
« less
- Award ID(s):
- 2421823
- PAR ID:
- 10612702
- Publisher / Repository:
- John R. Harley 1,* , Kellie Blair 1 , Shannon M. Cellan 2, Kari Lanphier 2, Lindsey Pierce 3, Cer Scott 3, Chris Whitehead 2 and Matthew O. Gribble
- Date Published:
- Journal Name:
- Toxins
- Volume:
- 16
- Issue:
- 11
- ISSN:
- 2072-6651
- Page Range / eLocation ID:
- 464
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The frequency of harmful algal blooms (HABs) has increased in China in recent years. Information about harmful dinoflagellates and paralytic shellfish toxins (PSTs) is still limited in China, especially in the Beibu Gulf, where PSTs in shellfish have exceeded food safety guidelines on multiple occasions. To explore the nature of the threat from PSTs in the region, eight Alexandrium strains were isolated from waters of the Beibu Gulf and examined using phylogenetic analyses of large subunit (LSU) rDNA, small subunit (SSU) rDNA, and internal transcribed spacer (ITS) sequences. Their toxin composition profiles were also determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). All eight strains clustered in the phylogenetic tree with A. pseudogonyaulax, A. affine, and A. tamiyavanichii from other locations, forming three well-resolved groups. The intraspecific genetic distances of the three Alexandrium species were significantly smaller than interspecific genetic distances for Alexandrium species. Beibu Gulf isolates were therefore classified as A. pseudogonyaulax, A. affine, and A. tamiyavanichii. No PSTs were identified in A. pseudogonyaulax, but low levels of gonyautoxins (GTXs) 1 to 5, and saxitoxin (STX) were detected in A. tamiyavanichii (a total of 4.60 fmol/cell). The extremely low level of toxicity is inconsistent with PST detection above regulatory levels on multiple occasions within the Beibu Gulf, suggesting that higher toxicity strains may occur in those waters, but were unsampled. Other explanations including biotransformation of PSTs in shellfish and the presence of other PST-producing algae are also suggested. Understanding the toxicity and phylogeny of Alexandrium species provides foundational data for the protection of public health in the Beibu Gulf region and the mitigation of HAB events.more » « less
-
Abstract In recent years, blooms of the neurotoxic dinoflagellateAlexandrium catenellahave been documented in Pacific Arctic waters, and the paralytic shellfish toxins (PSTs) that this species produces have been detected throughout the food web. These observations have raised significant concerns about the role that harmful algal blooms (HABs) will play in a rapidly changing Arctic. During a research cruise in summer 2022, a massive bloom ofA. catenellawas detected in real time as it was advected through the Bering Strait region. The bloom was exceptional in both spatial scale and density, extending > 600 km latitudinally, reaching concentrations > 174,000 cells L−1, and producing high‐potency PST congeners. Throughout the event, coastal stakeholders in the region were engaged and a multi‐faceted community response was mobilized. This unprecedented bloom highlighted the urgent need for response capabilities to ensure safe utilization of critical marine resources in a region that has little experience with HABs.more » « less
-
Two complementary approaches were used to assess year-round variation in the diet of sea otters Enhydra lutris around Prince of Wales Island (POW) in southern Southeast Alaska, a region characterized by mixed-bottom habitat. We observed sea otters foraging to determine diet composition during the spring and summer. Then, we obtained sea otter vibrissae, which record temporal foraging patterns as they grow, from subsistence hunters to identify year-round changes in sea otter diets via stable isotope analysis of carbon (δ 13 C) and nitrogen (δ 15 N). We compared the stable isotopes from sea otter vibrissae and sea otter prey items that were collected during spring, summer, and winter. Overall, year-round sea otter diet estimates from stable isotope signatures and visual observations from spring and summer were dominated by clams in terms of biomass, with butter clams Saxidomus gigantea the most common clam species seen during visual observations. Our results indicate that these sea otters, when considered together at a regional level around POW, do not exhibit shifts in the main prey source by season or location. However, sea otter diets identified by stable isotopes had a strong individual-level variation. Behavioral variation among individual sea otters may be a primary driving factor in diet composition. This study provides quantitative diet composition data for modeling predictions of invertebrate population estimates that may aid in the future management of shellfisheries and subsistence hunting and the development of co-management strategies for this protected species.more » « less
-
ABSTRACT Rural shellfish harvesters, including many Alaska Native peoples, require safe access to wild shellfish for subsistence, food security, and cultural practices. However, wild shellfish may be contaminated with paralytic shellfish toxins, leaving harvesters with increased risks of significant illness or death. To manage these risks, the Sitka Tribe of Alaska Environmental Research Lab (STAERL) was established to test shellfish samples sent in by harvesters in the community and to support regular monitoring of select local beaches by tribal governments. Here, we investigated harvester utilization of this shellfish testing service from 2016-2024, comprising 299 samples sent in by local harvesters, and used generalized linear models to examine how annual testing rates varied by year, location, species, and species-based detoxification rates. We pay particular attention to differences that may reflect the influence of risk perceptions and accessibility of harvesting and testing on utilization (DOI: 10.5061/dryad.dfn2z35dr). We find that testing utilization has increased through time (1.278, 95% CI: 1.161, 1.407), testing rates are highest in spring and broadly similar between the other three seasons, testing rates in Sitka are much higher than those outside of it, and neither road accessibility nor species-based detoxification rates strongly affect testing rate ratios. These findings suggest that shellfish testing behavior is consistent despite seasonal variations in risk and convenience, but that the STAERL individual testing program provides a pathway to maintain established subsistence harvest practices while reducing poisoning risks.more » « less
An official website of the United States government

