skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 5, 2026

Title: Systemic Robustness: A Mean‐Field Particle System Approach
ABSTRACT This paper is concerned with the problem of capital provision in a large particle system modeled by stochastic differential equations involving hitting times, which arises from considerations of systemic risk in a financial network. Motivated by Tang and Tsai, we focus on the number or proportion of surviving entities that never default to measure the systemic robustness. First we show that the mean‐field particle system and its limit McKean–Vlasov equation are both well‐posed by virtue of the notion of minimal solutions. We then establish a connection between the proportion of surviving entities in the large particle system and the probability of default in the McKean–Vlasov equation as the size of the interacting particle system tends to infinity. Finally, we study the asymptotic efficiency of capital provision for different drift , which is linked to the economy regime: The expected number of surviving entities has a uniform upper bound if ; it is of order if ; and it is of order if , where the effect of capital provision is negligible.  more » « less
Award ID(s):
2206038
PAR ID:
10612823
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Mathematical Finance
ISSN:
0960-1627
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider a dynamic model of interconnected banks. New banks can emerge, and existing banks can default, creating a birth-and-death setup. Microscopically, banks evolve as independent geometric Brownian motions. Systemic effects are captured through default contagion: as one bank defaults, reserves of other banks are reduced by a random proportion. After examining the long-term stability of this system, we investigate mean-field limits as the number of banks tends to infinity. Our main results concern the measure-valued scaling limit which is governed by a McKean–Vlasov jump-diffusion. The default impact creates a mean-field drift, while the births and defaults introduce jump terms tied to the current distribution of the process. Individual dynamics in the limit is described by the propagation of chaos phenomenon. In certain cases, we explicitly characterize the limiting average reserves. 
    more » « less
  2. Abstract We study the asymptotics of the point process induced by an interacting particle system with mean-field drift interaction. Under suitable assumptions, we establish propagation of chaos for this point process: It has the same weak limit as the point process induced by i.i.d. copies of the solution of a limiting McKean–Vlasov equation. This weak limit is a Poisson point process whose intensity measure is related to classical extreme value distributions. In particular, this yields the limiting distribution of the normalized upper order statistics. 
    more » « less
  3. We consider a general class of mean field control problems described by stochastic delayed differential equations of McKean-Vlasov type. Two numerical algorithms are provided based on deep learning techniques, one is to directly parameterizing the optimal control using neural networks, the other is based on numerically solving the McKean-Vlasov forward anticipated backward stochastic differential equation (MV-FABSDE) system. In addition, we establish the necessary and sufficient stochastic maximum principle of this class of mean field control problems with delay based on the differential calculus on function of measures, and the exis- tence and uniqueness results are proved for the associated MV-FABSDE system under suitable conditions. 
    more » « less
  4. This paper is concerned with the problem of counting solutions of stationary nonlinear Partial Differential Equations (PDEs) when the PDE is known to admit more than one solution. We suggest tackling the problem via a sampling-based approach. The method allows one to find solutions that are stable, in the sense that they are stable equilibria of the associated time-dependent PDE. We test our proposed methodology on the McKean–Vlasov PDE, more precisely on the problem of determining the number of stationary solutions of the McKean–Vlasov equation. This article is part of the theme issue ‘Partial differential equations in data science’. 
    more » « less
  5. Abstract We consider the Vlasov equation in any spatial dimension, which has long been known [ZI76, Mor80, Gib81, MW82] to be an infinite-dimensional Hamiltonian system whose bracket structure is ofLie–Poisson type. In parallel, it is classical that the Vlasov equation is amean-field limitfor a pairwise interacting Newtonian system. Motivated by this knowledge, we provide a rigorous derivation of the Hamiltonian structure of the Vlasov equation, both the Hamiltonian functional and Poisson bracket, directly from the many-body problem. One may view this work as a classical counterpart to [MNP+20], which provided a rigorous derivation of the Hamiltonian structure of the cubic nonlinear Schrödinger equation from the many-body problem for interacting bosons in a certain infinite particle number limit, the first result of its kind. In particular, our work settles a question of Marsden, Morrison and Weinstein [MMW84] on providing a ‘statistical basis’ for the bracket structure of the Vlasov equation. 
    more » « less