skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Plasma Optimization as a Novel Tool to Explore Plant–Microbe Interactions in Climate Smart Agriculture
Plasma treatment has emerged as a promising tool for manipulating plant microbiomes and metabolites. This review explores the diverse applications and effects of plasma on these biological systems. It is hypothesized that plasma treatment will not induce substantial changes in the composition of plant microbiomes or the concentration of plant metabolites. We delve into the mechanisms by which plasma can regulate microbial communities, enhance antimicrobial activity, and recruit beneficial microbes to mitigate stress. Furthermore, we discuss the optimization of plasma parameters for effective microbiome interaction and the role of plasmids in plant–microbe interactions. By characterizing plasmidome responses to plasma exposure and investigating transcriptional and metabolomic shifts, we provide insights into the potential of plasma as a tool for engineering beneficial plant–microbe interactions. The review presented herein demonstrates that plasma treatment induces substantial changes in both microbial community composition and metabolite levels, thereby refuting our initial hypothesis. Finally, we integrate plasmidome, transcriptome, and metabolome data to develop a comprehensive understanding of plasma’s effects on plant biology and explore future perspectives for agricultural applications.  more » « less
Award ID(s):
2514459
PAR ID:
10612952
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Microorganisms
Volume:
13
Issue:
1
ISSN:
2076-2607
Page Range / eLocation ID:
146
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Plant microbiomes have the potential to mitigate the impacts of climate change, yet both the complexity of climate change and the complexity of plant–microbe interactions make applications and future predictions challenging. Here, we embrace this complexity, reviewing how different aspects of climate change influence beneficial plant–microbe interactions and how advances in theory, tools, and applications may improve understanding and predictability of climate change effects on plants, microbiomes, and their roles within ecosystems. New advances include consideration of (1) interactions among climate stressors, such as more variable precipitation regimes combined with warmer mean temperature; (2) mechanisms that promote the stability of microbiome functions; (3) legacies of stress affecting the functionality of microbial communities under future stress; and (4) temporally repeated plant–microbe interactions or feedbacks. We also identify key gaps in each of these areas and spotlight the need for more research bridging molecular biology and ecology to develop a more mechanistic understanding of how climate change shapes beneficial microbe–plant interactions. 
    more » « less
  2. Abstract Anthropogenic habitat fragmentation—the breaking up of natural landscapes—is a pervasive threat to biodiversity and ecosystem function world‐wide. Fragmentation results in a mosaic of remnant native habitat patches embedded in human‐modified habitat known as the ‘matrix’. By introducing novel environmental conditions in matrix habitats and reducing connectivity of native habitats, fragmentation can dramatically change how organisms experience their environment. The effects of fragmentation can be especially important in urban landscapes, which are expanding across the globe. Despite this surging threat and the importance of microbiomes for ecosystem services, we know very little about how fragmentation affects microbiomes and even less about their consequences for plant–microbe interactions in urban landscapes.By combining field surveys, microbiome sequencing and experimental mesocosms, we (1) investigated how microbial community diversity, composition and functional profiles differed between 15 native pine rockland fragments and the adjacent urban matrix habitat, (2) identified habitat attributes that explained significant variation in microbial diversity of native core habitat compared to urban matrix and (3) tested how changes in urbanized and low connectivity microbiomes affected plant community productivity.We found urban and native microbiomes differed substantively in diversity, composition and functional profiles, including symbiotic fungi decreasing 81% and pathogens increasing 327% in the urban matrix compared to native habitat. Furthermore, fungal diversity rapidly declined as native habitats became increasingly isolated, with ~50% of variation across the landscape explained by habitat connectivity alone. Interestingly, microbiomes from native habitats increased plant productivity by ~300% while urban matrix microbiomes had no effect, suggesting that urbanization may decouple beneficial plant–microbe interactions. In addition, microbial diversity within native habitats explained significant variation in plant community productivity, with higher productivity linked to more diverse microbiomes from more connected, larger fragments.Synthesis. Taken together, our study not only documents significant changes in microbial diversity, composition and functions in the urban matrix, but also supports that two aspects of habitat fragmentation—the introduction of a novel urban matrix and reduced habitat connectivity—disrupt microbial effects on plant community productivity, highlighting preservation of native microbiomes as critical for productivity in remnant fragments. 
    more » « less
  3. Plant‐associated microbiomes can improve plant fitness by ameliorating environmental stress, providing a promising avenue for improving outplantings during restoration. However, the effects of water management on these microbial communities and their cascading effects on primary producers are unresolved for many imperiled ecosystems. One such habitat, Everglades tree islands, has declined by 54% in some areas, releasing excess nutrients into surrounding wetlands and exacerbating nutrient pollution. We conducted a factorial experiment, manipulating the soil microbiome and hydrological regime experienced by a tree island native,Ficus aurea, to determine how microbiomes impact growth under two hydrological management plans. All plants were watered to simulate natural precipitation, but plants in the “unconstrained” management treatment were allowed to accumulate water above the soil surface, while the “constrained” treatment had a reduced stage to avoid soil submersion. We found significant effects of the microbiomes on overall plant performance and aboveground versus belowground investment; however, these effects depended on hydrological treatment. For instance, microbiomes increased investment in roots relative to aboveground tissues, but these effects were 142% stronger in the constrained compared to unconstrained water regime. Changes in hydrology also resulted in changes in the prokaryotic community composition, including a >20 log2fold increase in the relative abundance of Rhizobiaceae, and hydrology‐shifted microbial composition was linked to changes in plant performance. Our results suggest that differences in hydrological management can have important effects on microbial communities, including taxa often involved in nitrogen cycling, which can in turn impact plant performance. 
    more » « less
  4. Abstract The rhizosphere microbiome influences many aspects of plant fitness, including production of secondary compounds and defence against insect herbivores. Plants also modulate the composition of the microbial community in the rhizosphere via secretion of root exudates. We tested both the effect of the rhizosphere microbiome on plant traits, and host plant effects on rhizosphere microbes using recombinant inbred lines (RILs) ofBrassica rapathat differ in production of glucosinolates (GLS), secondary metabolites that contribute to defence against insect herbivores. First, we investigated the effect of genetic variation in GLS production on the composition of the rhizosphere microbiome. Using a Bayesian Dirichlet‐multinomial regression model (DMBVS), we identified both negative and positive associations between bacteria from six genera and the concentration of five GLS compounds produced in plant roots. Additionally, we tested the effects of microbial inoculation (an intact vs. disrupted soil microbiome) on GLS production and insect damage in these RILs. We found a significant microbial treatment × genotype interaction, in which total GLS was higher in the intact relative to the disrupted microbiome treatment in some RILs. However, despite differences in GLS production between microbial treatments, we observed no difference in insect damage between treatments. Together, these results provide evidence for a full feedback cycle of plant–microbe interactions mediated by GLS; that is, GLS compounds produced by the host plant “feed‐down” to influence rhizosphere microbial community and rhizosphere microbes “feed‐up” to influence GLS production. 
    more » « less
  5. Abstract Interactions between plants and soil microbes can influence plant population dynamics and diversity in plant communities. Traditional theoretical paradigms view the microbial community as a black box with net effects described by phenomenological models.This approach struggles to quantify the importance of plant–microbe interactions relative to other competition and coexistence mechanisms and to explain context dependence in microbe effects.We argue that a mechanistic framework focused on microbial functional groups will lead to conceptual and empirical advances, as demonstrated by extending resource ratio theory to plant–microbe interactions. We review the diverse pathways by which different microbial functional groups can influence plant resource competition. Finally, we suggest approaches to link theory with observations to measure the key parameters of our framework.Synthesis: Our review highlights recent experimental advancements for uncovering microbial mechanisms that alter plant host resource competition and coexistence. We synthesize these mechanisms into a conceptual model that provides a framework for future experiments to investigate the importance of plant–microbe interactions in structuring plant populations and communities. 
    more » « less