skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechanistic and Curtin–Hammett Studies of the 1 O 2 Oxidation of a Prenyl Phenol and Phenolate Anion
ABSTRACT The Curtin–Hammett principle, widely recognized in thermal reactions, has been extended to photosensitization processes in this study, providing new insights into the reactivity of photogenerated singlet oxygen (1O2) with phenol and phenolate anion species. Here, we explore mechanistic and Curtin–Hammett studies of the equilibrium between the phenol and phenolate anion forms of a prenylated natural product, prenylphloroglucinol. This study uses density functional theory (DFT) to examine phenol and phenolate anion‐quenching pathways of 1O2 showing distinct pathways for each form. In the phenolate anion,1O2 is quenched to form a peroxy anion. In contrast, in the phenol form,1O2 leads to a potent epoxidizing agent in a seemingly pro‐oxidant path. Aniso‐hydroperoxyhydrofuran intermediate is proposed to be key in the epoxidation. Meanwhile, the phenolate anion cyclizes and protonates forming a comparatively benign hydroperoxyhydrofuran species. The phloroglucinol is next to the C‐prenyated group directs the reaction pathway towards the formation of a dihydrobenzofuran, deviating from the conventional 1O2 “ene” reaction mechanism and the production of allylic hydroperoxides typically observed in trisubstituted alkenes.  more » « less
Award ID(s):
2154133
PAR ID:
10613004
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Physical Organic Chemistry
Volume:
38
Issue:
5
ISSN:
0894-3230
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cadet, Jean (Ed.)
    Abstract A density functional theoretical (DFT) study is presented, implicating a1O2oxidation process to reach a dihydrobenzofuran from the reaction of the natural homoallylic alcohol, glycocitrine. Our results predict an interconversion between glycocitrine and aniso‐hydroperoxide intermediate [R(H)O+–O] that provides a key path in the chemistry which then follows. Formations of allylic hydroperoxides are unlikely from a1O2‘ene’ reaction. Instead, the dihydrobenzofuran arises by1O2oxidation facilitated by a 16° curvature of the glycocitrine ring imposed by a pyramidalN‐methyl group. This curvature facilitates the formation of theiso‐hydroperoxide, which is analogous to theisospecies CH2I+–Iand CHI2+–Iformed by UV photolysis of CH2I2and CHI3. Theiso‐hydroperoxide is also structurally reminiscent of carbonyl oxides (R2C=O+–O) formed in the reaction of carbenes and oxygen. Our DFT results point to intermolecular process, in which theiso‐hydroperoxide's fate relates to O‐transfer and H2O dehydration reactions for new insight into the biosynthesis of dihydrobenzofuran natural products. 
    more » « less
  2. The hydroxylation of C–H bonds can be carried out by the high-valent CoIII,IV2(µ-O)2complex2asupported by the tetradentate tris(2-pyridylmethyl)amine ligand via a CoIII2(µ-O)(µ-OH) intermediate (3a). Complex3acan be independently generated either by H-atom transfer (HAT) in the reaction of2awith phenols as the H-atom donor or protonation of its conjugate base, the CoIII2(µ-O)2complex1a. Resonance Raman spectra of these three complexes reveal oxygen-isotope-sensitive vibrations at 560 to 590 cm−1associated with the symmetric Co–O–Co stretching mode of the Co2O2diamond core. Together with a Co•••Co distance of 2.78(2) Å previously identified for1aand2aby Extended X-ray Absorption Fine Structure (EXAFS) analysis, these results provide solid evidence for their “diamond core” structural assignments. The independent generation of3aallows us to investigate HAT reactions of2awith phenols in detail, measure the redox potential and pKaof the system, and calculate the O–H bond strength (DO–H) of3ato shed light on the C–H bond activation reactivity of2a. Complex3ais found to be able to transfer its hydroxyl ligand onto the trityl radical to form the hydroxylated product, representing a direct experimental observation of such a reaction by a dinuclear cobalt complex. Surprisingly, reactivity comparisons reveal2ato be 106-fold more reactive in oxidizing hydrocarbon C–H bonds than corresponding FeIII,IV2(µ-O)2and MnIII,IV2(µ-O)2analogs, an unexpected outcome that raises the prospects for using CoIII,IV2(µ-O)2species to oxidize alkane C–H bonds. 
    more » « less
  3. Abstract While SbCl3is typically inert toward oxidation byortho‐quinones, we useo‐chloranil to show that the outcome of such reactions may be altered by the presence of a donor such as triphenylphosphine oxide, which readily traps the SbCl3(catCl) synthon (catCl = tetrachlorocatecholate) in the form of the corresponding adduct Ph3PO→SbCl3(catCl). The same reaction in the presence of a chloride salt affords the corresponding antimonate anion [Cl4Sb(catCl)]. Computational studies indicate that the putative SbCl3(catCl) synthon has a higher chloride ion affinity than SbCl5, suggesting significant Lewis acidity. This property is further demonstrated by the use of the SbCl3/o‐chloranil system for both THF polymerization and a Friedel–Crafts‐type alkylation of benzene using 1‐fluorooctane. Finally, the reaction ofE‐stilbene witho‐chloranil in the presence of SbCl3affords the corresponding benzodioxene, suggesting that SbCl3may also operate as a redox‐active catalyst. 
    more » « less
  4. Abstract Organofunctionalized tetranuclear clusters [(MIICl)2(VIVO)2{((HOCH2CH2)(H)N(CH2CH2O))(HN(CH2CH2O)2)}2] (1, M=Co,2: M=Zn) containing an unprecedented oxometallacyclic {M2V2Cl2N4O8} (M=Co, Zn) framework have been prepared by solvothermal reactions. The new oxo‐alkoxide compounds were fully characterized by spectroscopic methods, magnetic susceptibility measurement, DFT and ab initio computational methods, and complete single‐crystal X‐ray diffraction structure analysis. The isostructural clusters are formed of edge‐sharing octahedral {VO5N} and trigonal bipyramidal {MO3NCl} units. Diethanolamine ligates the bimetallic lacunary double cubane core of1and2in an unusual two‐mode fashion, unobserved previously. In the crystalline state, the clusters of1and2are joined by hydrogen bonds to form a three‐dimensional network structure. Magnetic susceptibility data indicate weakly antiferromagnetic interactions between the vanadium centers [Jiso(VIV−VIV)=−5.4(1); −3.9(2) cm−1], and inequivalent antiferromagnetic interactions between the cobalt and vanadium centers [Jiso(VIV−CoII)=−12.6 and −7.5 cm−1] contained in1. 
    more » « less
  5. The title complex, (1,4,7,10,13,16-hexaoxacyclooctadecane-1κ6O)(μ-oxalato-1κ2O1,O2:2κ2O1′,O2′)triphenyl-2κ3C-potassium(I)tin(IV), [KSn(C6H5)3(C2O4)(C12H24O6)] or K[18-Crown-6][(C6H5)3SnO4C2], was synthesized. The complex consists of a potassium cation coordinated to the six oxygen atoms of a crown ether molecule and the two oxygen atoms of the oxalatotriphenylstannate anion. It crystallizes in the monoclinic crystal system within the space groupP21. The tin atom is coordinated by one chelating oxalate ligand and three phenyl groups, forming acis-trigonal–bipyramidal geometry around the tin atom. The cations and anions form ion pairs, linked through carbonyl coordination to the potassium atoms. The crystal structure features C—H...O hydrogen bonds between the oxygen atoms of the oxalate group and the hydrogen atoms of the phenyl groups, resulting in an infinite chain structure extending alonga-axis direction. The primary inter-chain interactions are van der Waals forces. 
    more » « less