We report measurements of time-dependent asymmetries in decays based on a data sample of events collected at the resonance with the Belle II detector. The Belle II experiment operates at the SuperKEKB asymmetric-energy collider. We measure decay-time distributions to determine -violating parameters and . We determine these parameters for two ranges of invariant mass: , which is dominated by decays, and a complementary region . Our results have improved precision as compared to previous measurements and are consistent with theory predictions. Published by the American Physical Society2025
more »
« less
Angular analysis of B→K*e+e− in the low- q2 region with new electron identification at Belle
We perform an angular analysis of the decay for the dielectron mass squared, , range of using the full Belle dataset in the and channels, incorporating new methods of electron identification to improve the statistical power of the dataset. This analysis is sensitive to contributions from right-handed currents from physics beyond the Standard Model by constraining the Wilson coefficients . We perform a fit to the differential decay rate and measure the imaginary component of the transversality amplitude to be , and the transverse asymmetry to be , with and fixed to the Standard Model values. The resulting constraints on the value of are consistent with the Standard Model within a confidence interval. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2209481
- PAR ID:
- 10613021
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 110
- Issue:
- 7
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report measurements of production cross sections for , , , , , , , , , , , , , , and in collisions at a center-of-mass energy near 10.58 GeV. The data were recorded by the Belle experiment, consisting of at 10.58 GeV and at 10.52 GeV. Production cross sections are extracted as a function of the fractional hadron momentum . The measurements are compared to Monte Carlo generator predictions with various fragmentation settings, including those that have increased fragmentation into vector mesons over pseudoscalar mesons. The cross sections measured for light hadrons are consistent with no additional increase of vector over pseudoscalar mesons. The charmed-meson cross sections are compared to earlier measurements—when available—including older Belle results, which they supersede. They are in agreement before application of an improved initial-state radiation correction procedure that causes slight changes in their shapes. Published by the American Physical Society2025more » « less
-
We report the result of a search for the rare decay using a combined dataset of pairs collected by the Belle experiment and pairs collected by the Belle II experiment from decays of the resonance produced in collisions. A simultaneous fit to the Belle and Belle II data sets yields signal events, corresponding to a significance. We determine the branching fraction and set a 90% credibility level upper limit of . Published by the American Physical Society2024more » « less
-
The first observation of the decay and measurement of the branching ratio of to are presented. The and mesons are reconstructed using their dimuon decay modes. The results are based on proton-proton colliding beam data from the LHC collected by the CMS experiment at in 2016–2018, corresponding to an integrated luminosity of . The branching fraction ratio is measured to be , where the last uncertainty comes from the uncertainties in the branching fractions of the charmonium states. New measurements of the baryon mass and natural width are also presented, using the final state, where the baryon is reconstructed through the decays , , , and . Finally, the fraction of baryons produced from decays is determined. © 2024 CERN, for the CMS Collaboration2024CERNmore » « less
-
An amplitude analysis of decays is performed using proton-proton collision data, corresponding to an integrated luminosity of , collected with the LHCb detector at center-of-mass energies of 7, 8, and 13 TeV. A resonant structure of spin-parity is observed in the invariant-mass spectrum with a significance of . The mass and width of the state, modeled with a Breit-Wigner line shape, are determined to be and , respectively, where the first uncertainties are statistical and the second systematic. These properties and the quark content are consistent with those of the open-charm tetraquark candidate observed previously in the final state of the decay. This result confirms the existence of the state in a new decay mode. The state, reported in the decay, is also searched for in the invariant-mass spectrum of the decay, without finding evidence for it. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « less
An official website of the United States government

