ine-tuning Large Language Models (LLMs) and storing them for each downstream task or domain is impractical because of the massive model size (e.g., 350GB in GPT-3). Current literature, such as LoRA, showcases the potential of low-rank modifications to the original weights of an LLM, enabling efficient adaptation and storage for task-specific models. These methods can reduce the number of parameters needed to fine-tune an LLM by several orders of magnitude. Yet, these methods face two primary limitations: (1) the parameter count is lower-bounded by the rank one decomposition, and (2) the extent of reduction is heavily influenced by both the model architecture and the chosen rank. We introduce NOLA, which overcomes the rank one lower bound present in LoRA. It achieves this by re-parameterizing the low-rank matrices in LoRA using linear combinations of randomly generated matrices (basis) and optimizing the linear mixture coefficients only. This approach allows us to decouple the number of trainable parameters from both the choice of rank and the network architecture. We present adaptation results using GPT-2, LLaMA-2, and ViT in natural language and computer vision tasks. NOLA performs as well as LoRA models with much fewer number of parameters compared to LoRA with rank one, the best compression LoRA can archive. Particularly, on LLaMA-2 70B, our method is almost 20 times more compact than the most compressed LoRA without degradation in accuracy. Our code is available here: https://github.com/UCDvision/NOLA
more »
« less
This content will become publicly available on June 1, 2026
TDA-L: Reducing Latency and Memory Consumption of Test-Time Adaptation for Real-Time Intelligent Sensing
Vision–language models learn visual concepts from the supervision of natural language. It can significantly enhance the generalizability of real-time intelligent sensing, such as analyzing camera-captured real-time images for visually impaired users. However, adapting vision–language models to distribution shifts at test time, caused by several factors such as lighting or weather changes, remains challenging. In particular, most existing test-time adaptation methods rely on gradient-based fine-tuning and backpropagation, making them computationally expensive and unsuitable for real-time applications. To address this challenge, the Training-Free Dynamic Adapter (TDA) has recently been introduced as a lightweight alternative that uses a dynamic key–value cache and pseudo-label refinement for test-time adaptation without backpropagation. Building on this, we propose TDA-L, a new framework that integrates Low-Rank Adaptation (LoRA) to reduce the size of feature representations and related computational overhead at test time using pre-learned low-rank matrices. TDA-L applies LoRA transformations to both query and cached features during inference, cost-efficiently improving robustness to distribution shifts while maintaining the training-free nature of TDA. Experimental results on seven benchmarks show that TDA-L maintains accuracy but achieves lower latency, less memory consumption, and higher throughput, making it well-suited for AI-based real-time sensing.
more »
« less
- Award ID(s):
- 2326796
- PAR ID:
- 10613281
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 25
- Issue:
- 12
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 3574
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Catastrophic forgetting is a significant challenge in online continual learning (OCL), especially for nonstationary data streams that do not have well-defined task boundaries. This challenge is exacerbated by the memory constraints and privacy concerns inherent in rehearsal buffers. To tackle catastrophic forgetting, in this paper, we introduce Online-LoRA, a novel framework for task-free OCL. Online-LoRA allows to finetune pre-trained Vision Transformer (ViT) models in real-time to address the limitations of rehearsal buffers and leverage pre-trained models’ performance benefits. As the main contribution, our approach features a novel online weight regularization strategy to identify and consolidate important model parameters. Moreover, Online-LoRA leverages the training dynamics of loss values to enable the automatic recognition of the data distribution shifts. Extensive experiments across many task-free OCL scenarios and benchmark datasets (including CIFAR-100, ImageNet-R, ImageNet-S, CUB-200 and CORe50) demonstrate that Online-LoRA can be robustly adapted to various ViT architectures, while achieving better performance compared to SOTA methods.more » « less
-
Training Large Language Models (LLMs) presents significant memory challenges, predominantly due to the growing size of weights and optimizer states. Common memory-reduction approaches, such as low-rank adaptation (LoRA), add a trainable low-rank matrix to the frozen pre-trained weight in each layer, reducing trainable parameters and optimizer states. However, such approaches typically underperform training with full-rank weights in both pre-training and fine-tuning stages since they limit the parameter search to a low-rank subspace and alter the training dynamics, and further, may require full-rank warm start. In this work, we propose Gradient Low-Rank Projection (GaLore), a training strategy that allows full-parameter learning but is more memory-efficient than common low-rank adaptation methods such as LoRA. Our approach reduces memory usage by up to 65.5% in optimizer states while maintaining both efficiency and performance for pre-training on LLaMA 1B and 7B architectures with C4 dataset with up to 19.7B tokens, and on fine-tuning RoBERTa on GLUE tasks. Our 8-bit GaLore further reduces optimizer memory by up to 82.5% and total training memory by 63.3%, compared to a BF16 baseline. Notably, we demonstrate, for the first time, the feasibility of pre-training a 7B model on consumer GPUs with 24GB memory (e.g., NVIDIA RTX 4090) without model parallel, checkpointing, or offloading strategies.more » « less
-
Training Large Language Models (LLMs) presents significant memory challenges, predominantly due to the growing size of weights and optimizer states. Common memory-reduction approaches, such as low-rank adaptation (LoRA), add a trainable low-rank matrix to the frozen pre-trained weight in each layer, reducing trainable parameters and optimizer states. However, such approaches typically underperform training with full-rank weights in both pre-training and fine-tuning stages since they limit the parameter search to a low-rank subspace and alter the training dynamics, and further, may require full-rank warm start. In this work, we propose Gradient Low-Rank Projection (GaLore), a training strategy that allows full-parameter learning but is more memory-efficient than common low-rank adaptation methods such as LoRA. Our approach reduces memory usage by up to 65.5% in optimizer states while maintaining both efficiency and performance for pre-training on LLaMA 1B and 7B architectures with C4 dataset with up to 19.7B tokens, and on fine-tuning RoBERTa on GLUE tasks. Our 8-bit GaLore further reduces optimizer memory by up to 82.5% and total training memory by 63.3%, compared to a BF16 baseline. Notably, we demonstrate, for the first time, the feasibility of pre-training a 7B model on consumer GPUs with 24GB memory (e.g., NVIDIA RTX 4090) without model parallel, checkpointing, or offloading strategies.more » « less
-
Low-Rank Adaptation (LoRA) has recently gained attention for fine-tuning foundation models by incorporating trainable low-rank matrices, thereby reducing the number of trainable parameters. While LoRA offers numerous advantages, its applicability for real-time serving to a diverse and global user base is constrained by its incapability to handle multiple task-specific adapters efficiently. This imposes a performance bottleneck in scenarios requiring personalized, task-specific adaptations for each incoming request. To mitigate this constraint, we introduce Fast LoRA (FLoRA), a framework in which each input example in a minibatch can be associated with its unique low-rank adaptation weights, allowing for efficient batching of heterogeneous requests. We empirically demonstrate that FLoRA retains the performance merits of LoRA, showcasing competitive results on the MultiPL-E code generation benchmark spanning over 8 languages and a multilingual speech recognition task across 6 languages.more » « less
An official website of the United States government
