skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 3, 2026

Title: Not Once, not Twice, but Thrice: Structure and Catalytic Mechanisms of the Dihydroorotate Dehydrogenases
Dihydroorotate dehydrogenases (DHODs) are common to all life and catalyze the oxidation of dihydroorotate (DHO) to orotate the precursor of all pyrimidine nucleotides. The core structure of all DHODs has a TIM-barrel topology (the PyrD subunit or domain) that harbors an FMN cofactor that interacts with DHO. There are two classes of DHOD enzymes. Each has unique structures and oxidant substrates that conserve part of the energy available by coupling the reaction to ATP synthesis. The class 1 enzymes are soluble and divided into classes 1A and 1B. Class 1A has fumarate as the electron acceptor forming succinate and is the simplest form of DHOD, successively binding DHO and fumarate at the same active site locale. Class 1B uses NAD+ as the oxidant and this form of DHOD is heterodimeric having, in addition to the PyrD subunit, a subunit (PyrK) whose structure is like those of ferredoxin reductases. PyrK adds a second active site with a bound FAD that interacts with the NAD+ substrate and includes an Fe2S2 center that resides at the interface of the subunits, forming a conduit for electrons. Class 2 DHODs have ubiquinone (UQ) as the electron acceptor. This form of DHOD is membrane associated via an N-terminal domain that also forms a quinone binding site end-on to the FMN xylene moiety. This arrangement uses the flavin to mediate between the substrates and as a redox partition between water-soluble NAD+ and lipid soluble UQ10. In this review, we summarize the structure and mechanism of DHOD enzymes.  more » « less
Award ID(s):
2203593
PAR ID:
10613612
Author(s) / Creator(s):
;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Biochemistry
Volume:
64
Issue:
11
ISSN:
0006-2960
Page Range / eLocation ID:
2353 to 2363
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Schepartz, Alanna (Ed.)
    The physiological role of dihydroorotate dehydrogenase (DHOD) enzymes is to catalyze the oxidation of dihydroorotate to orotate in pyrimidine biosynthesis. DHOD enzymes are structurally diverse existing as both soluble and membrane-associated forms. The Family 1 enzymes are soluble and act either as conventional single subunit flavin-dependent dehydrogenases known as Class 1A (DHODA) or as unusual heterodimeric enzymes known as Class 1B (DHODB). DHODBs possess two active sites separated by ∼20 Å, each with a noncovalently bound flavin cofactor. NAD is thought to interact at the FAD containing site, and the pyrimidine substrate is known to bind at the FMN containing site. At the approximate center of the protein is a single Fe2S2 center that is assumed to act as a conduit, facilitating one-electron transfers between the flavins. We present anaerobic transient state analysis of a DHODB enzyme from Lactoccocus lactis. The data presented primarily report the exothermic reaction that reduces orotate to dihydroorotate. The reductive half reaction reveals rapid two-electron reduction that is followed by the accumulation of a four-electron reduced state when NADH is added in excess, suggesting that the initial two electrons acquired reside on the FMN cofactor. Concomitant with the first reduction is the accumulation of a long-wavelength absorption feature consistent with the blue form of a flavin semiquinone. Spectral deconvolution and fitting to a model that includes reversibility for the second electron transfer reveals equilibrium accumulation of a flavin bisemiquinone state that has features of both red and blue semiquinones. Single turnover reactions with limiting NADH and excess orotate reveal that the flavin bisemiquinone accumulates with reduction of the enzyme by NADH and decays with reduction of the pyrimidine substrate, establishing the bisemiquinone as a fractional state of the two-electron reduced intermediate observed. 
    more » « less
  2. Dihydroorotate dehydrogenases (DHODs) catalyze the transfer of electrons between dihydroorotate and specific oxidant substrates. Class 1B DHODs (DHODBs) use NAD+ as the oxidant substrate and have a heterodimeric structure that incorporates two active sites, each with a flavin cofactor. One Fe2S2 center lies roughly equidistant between the flavin isoalloxazine rings. This arrangement allows for simultaneous association of reductant and oxidant substrates. Here we describe a series of experiments designed to reveal sequences and contingencies in DHODB chemistry. From these data it was concluded that the resting state of the enzyme is FAD•Fe2S2•FMN. Reduction by either NADH or DHO results in two electrons residing on the FMN cofactor that has a 47 mV higher reduction potential than the FAD. The FAD•Fe2S2•FMNH2 state accumulates with a bisemiquinone state that is an equilibrium accumulation formed from a partial transfer of one electron to the FAD. Pyrimidine reduction is reliant on the availability of the Cys135 proton, as the C135S variant slows orotate reduction by ∼40-fold. The rate of pyrimidine reduction is modulated by occupancy of the FAD site; NADH•FAD•Fe2S2•FMNH2•orotate complex can reduce the pyrimidine at 16 s–1, while NAD+•FAD•Fe2S2•FMNH2•orotate complex reduces the pyrimidine at 5.4 s–1 and the FAD•Fe2S2•FMNH2•orotate complex at 0.6 s–1. This set of effector states account for the apparent discrepancy in the slowest rate observed in transient state single turnover reactions with limiting NADH and the limiting rate observed in steady state. 
    more » « less
  3. Jin, Jian-Ping; Forman, Henry (Ed.)
    Flavin disulfide reductases (FDRs) are FAD-dependent enzymes that transmit electrons from NAD(P)H to reduce specific oxidant substrate disulfides. These enzymes have been studied extensively, most particularly the paradigm examples: glutathione reductase and thioredoxin reductase. The common, though not universal, traits of the family include a tyrosine- or phenylalanine-gated binding pocket for NAD(P) nicotinamides adjacent to the FAD isoalloxazine re-face, and a disulfide stacked against the si-face of the isoalloxazine whose dithiol form is activated for subsequent exchange reactions by a nearby histidine acting as a base. This arrangement promotes transduction of the reducing equivalents for disulfide exchange relay reactions. From an observational standpoint the proximal parallel stacking of three redox moieties induces up to three opportunities for unique charge transfer interactions (NAD(P)H FAD, NAD(P)+•FADH2, and FAD•thiolate). In transient state, the charge transfer transitions provide discrete signals to assign reaction sequences. This review summarizes the lineage of observations for the FDR enzymes that have been extensively studied. Where applicable and in order to chart a consistent interpretation of the record, only data derived from studies that used anaerobic methods are cited. These data reveal a recurring theme for catalysis that is elaborated with specific additional functionalities for each oxidant substrate. 
    more » « less
  4. Enzymes possessing the nickel-pincer nucleotide (NPN) cofactor catalyze C2 racemization or epimerization reactions of α-hydroxyacid substrates. LarB initiates synthesis of the NPN cofactor from nicotinic acid adenine dinucleotide (NaAD) by performing dual reactions: pyridinium ring C5 carboxylation and phosphoanhydride hydrolysis. Here, we show that LarB uses carbon dioxide, not bicarbonate, as the substrate for carboxylation and activates water for hydrolytic attack on the AMP-associated phosphate of C5-carboxylated-NaAD. Structural investigations show that LarB has an N-terminal domain of unique fold and a C-terminal domain homologous to aminoimidazole ribonucleotide carboxylase/mutase (PurE). Like PurE, LarB is octameric with four active sites located at subunit interfaces. The complex of LarB with NAD+, an analog of NaAD, reveals the formation of a covalent adduct between the active site Cys221 and C4 of NAD+, resulting in a boat-shaped dearomatized pyridine ring. The formation of such an intermediate with NaAD would enhance the reactivity of C5 to facilitate carboxylation. Glu180 is well positioned to abstract the C5 proton, restoring aromaticity as Cys221 is expelled. The structure of as-isolated LarB and its complexes with NAD+and the product AMP identify additional residues potentially important for substrate binding and catalysis. In combination with these findings, the results from structure-guided mutagenesis studies lead us to propose enzymatic mechanisms for both the carboxylation and hydrolysis reactions of LarB that are distinct from that of PurE. 
    more » « less
  5. Escherichia coliexpress adhesion pili that mediate attachment to host cell surfaces and are exposed to body fluids in the urinary and gastrointestinal tracts. Pilin subunits are organized into helical polymers, with a tip adhesin for specific host binding. Pili can elastically unwind when exposed to fluid flow forces, reducing the adhesin load, thereby facilitating sustained attachment. Here we investigate biophysical and structural differences of pili commonly expressed on bacteria that inhabit the urinary and intestinal tracts. Optical tweezers measurements reveal that class 1a pili of uropathogenicE. coli(UPEC), as well as class 1b of enterotoxigenicE. coli(ETEC), undergo an additional conformational change beyond pilus unwinding, providing significantly more elasticity to their structure than ETEC class 5 pili. Examining structural and steered molecular dynamics simulation data, we find that this difference in class 1 pili subunit behavior originates from an α-helical motif that can unfold when exposed to force. A disulfide bond cross-linking β-strands in class 1 pili stabilizes subunits, allowing them to tolerate higher forces than class 5 pili that lack this covalent bond. We suggest that these extra contributions to pilus resiliency are relevant for the UPEC niche, since resident bacteria are exposed to stronger, more transient drag forces compared to those experienced by ETEC bacteria in the mucosa of the intestinal tract. Interestingly, class 1b ETEC pili include the same structural features seen in UPEC pili, while requiring lower unwinding forces that are more similar to those of class 5 ETEC pili. 
    more » « less