In recent years, large language models (LLMs) have seen rapid advancement and adoption, and are increasingly being used in educational contexts. In this perspective article, we explore the open challenge of leveraging LLMs to create personalized learning environments that support the “whole learner” by modeling and adapting to both cognitive and non-cognitive characteristics. We identify three key challenges toward this vision: (1) improving the interpretability of LLMs' representations of whole learners, (2) implementing adaptive technologies that can leverage such representations to provide tailored pedagogical support, and (3) authoring and evaluating LLM-based educational agents. For interpretability, we discuss approaches for explaining LLM behaviors in terms of their internal representations of learners; for adaptation, we examine how LLMs can be used to provide context-aware feedback and scaffold non-cognitive skills through natural language interactions; and for authoring, we highlight the opportunities and challenges involved in using natural language instructions to specify behaviors of educational agents. Addressing these challenges will enable personalized AI tutors that can enhance learning by accounting for each student's unique background, abilities, motivations, and socioemotional needs. 
                        more » 
                        « less   
                    This content will become publicly available on April 25, 2026
                            
                            LearnMate: Enhancing Online Education with LLM-Powered Personalized Learning Plans and Support
                        
                    
    
            With the increasing prevalence of online learning, adapting education to diverse learner needs remains a persistent challenge. Recent advancements in artificial intelligence (AI), particularly large language models (LLMs), promise powerful tools and capabilities to enhance personalized learning in online educational environments. In this work, we explore how LLMs can improve personalized learning experiences by catering to individual user needs toward enhancing the overall quality of online education. We designed personalization guidelines based on the growing literature on personalized learning to ground LLMs in generating tailored learning plans. To operationalize these guidelines, we implemented LearnMate, an LLM-based system that generates personalized learning plans and provides users with real-time learning support. We discuss the implications and future directions of this work, aiming to move beyond the traditional one-size-fits-all approach by integrating LLM-based personalized support into online learning environments. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2152163
- PAR ID:
- 10613645
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400713958
- Page Range / eLocation ID:
- 1 to 10
- Format(s):
- Medium: X
- Location:
- Yokohama Japan
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This paper examines the design and evaluation of Large Language Model (LLM) tutors for Python programming, focusing on personalization that accommodates diverse student backgrounds. It highlights the challenges faced by socioeconomically disadvantaged students in computing courses and proposes LLM tutors as a solution to provide inclusive educational support. The study explores two LLM tutors, Khanmigo and CS50.ai, assessing their ability to offer personalized learning experiences. By employing a focus group methodology at a public minority-serving institution, the research evaluates how these tutors meet varied educational goals and adapt to students’ diverse needs. The findings underscore the importance of advanced techniques to tailor interactions and integrate programming tools based on students' progress. This research contributes to the understanding of educational technologies in computing education and provides insights into the design and implementation of LLM tutors that effectively support equitable student success.more » « less
- 
            Can world knowledge learned by large language models (LLMs) be used to act in interactive environments? In this paper, we investigate the possibility of grounding high-level tasks, expressed in natural language (e.g. "make breakfast"), to a chosen set of actionable steps (e.g. "open fridge"). While prior work focused on learning from explicit step-by-step examples of how to act, we surprisingly find that if pre-trained LMs are large enough and prompted appropriately, they can effectively decompose high-level tasks into low-level plans without any further training. However, the plans produced naively by LLMs often cannot map precisely to admissible actions. We propose a procedure that conditions on existing demonstrations and semantically translates the plans to admissible actions. Our evaluation in the recent VirtualHome environment shows that the resulting method substantially improves executability over the LLM baseline. The conducted human evaluation reveals a trade-off between executability and correctness but shows a promising sign towards extracting actionable knowledge from language models.more » « less
- 
            Personalized learning stems from the idea that students benefit from instructional material tailored to their needs. Many online learning platforms purport to implement some form of personalized learning, often through on-demand tutoring or self-paced instruction, but to our knowledge none have a way to automatically explore for specific opportunities to personalize students’ education nor a transparent way to identify the effects of personalization on specific groups of students. In this work we present the Automatic Personalized Learning Service (APLS). The APLS uses multi-armed bandit algorithms to recommend the most effective support to each student that requests assistance when completing their online work, and is currently used by ASSISTments, an online learning platform. The first empirical study of the APLS found that Beta-Bernoulli Thompson Sampling, a popular and effective multi-armed bandit algorithm, was only slightly more capable of selecting helpful support than randomly selecting from the relevant support options. Therefore, we also present Decision Tree Thompson Sampling (DTTS), a novel contextual multi-armed bandit algorithm that integrates the transparency and interpretability of decision trees into Thomson sampling. In simulation, DTTS overcame the challenges of recommending support within an online learning platform and was able to increase students’ learning by as much as 10% more than the current algorithm used by the APLS. We demonstrate that DTTS is able to identify qualitative interactions that not only help determine the most effective support for students, but that also generalize well to new students, problems, and support content. The APLS using DTTS is now being deployed at scale within ASSISTments and is a promising tool for all educational learning platforms.more » « less
- 
            Personalized learning stems from the idea that students benefit from instructional material tailored to their needs. Many online learning platforms purport to implement some form of personalized learning, often through on-demand tutoring or self-paced instruction, but to our knowledge none have a way to automatically explore for specific opportunities to personalize students’ education nor a transparent way to identify the effects of personalization on specific groups of students. In this work we present the Automatic Personalized Learning Service (APLS). The APLS uses multi-armed bandit algorithms to recommend the most effective support to each student that requests assistance when completing their online work, and is currently used by ASSISTments, an online learning platform. The first empirical study of the APLS found that Beta-Bernoulli Thompson Sampling, a popular and effective multi-armed bandit algorithm, was only slightly more capable of selecting helpful support than randomly selecting from the relevant support options. Therefore, we also present Decision Tree Thompson Sampling (DTTS), a novel contextual multi-armed bandit algorithm that integrates the transparency and interpretability of decision trees into Thomson sampling. In simulation, DTTS overcame the challenges of recommending support within an online learning platform and was able to increase students’ learning by as much as 10% more than the current algorithm used by the APLS. We demonstrate that DTTS is able to identify qualitative interactions that not only help determine the most effective support for students, but that also generalize well to new students, problems, and support content. The APLS using DTTS is now being deployed at scale within ASSISTments and is a promising tool for all educational learning platforms.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
