Abstract Inspired by biological motor proteins, that efficiently convert chemical fuel to unidirectional motion, there has been considerable interest in developing synthetic analogues. Among the synthetic motors created thus far, DNA motors that undertake discrete steps on RNA tracks have shown the greatest promise. Nonetheless, DNA nanomotors lack intrinsic directionality, are low speed and take a limited number of steps prior to stalling or dissociation. Herein, we report the first example of a highly tunable DNA origami motor that moves linearly over micron distances at an average speed of 40 nm/min. Importantly, nanomotors move unidirectionally without intervention through an external force field or a patterned track. Because DNA origami enables precise testing of nanoscale structure‐function relationships, we were able to experimentally study the role of motor shape, chassis flexibility, leg distribution, and total number of legs in tuning performance. An anisotropic rigid chassis coupled with a high density of legs maximizes nanomotor speed and endurance. 
                        more » 
                        « less   
                    
                            
                            Adhesive Dynamics Simulations of Highly Polyvalent DNA Motors
                        
                    
    
            Molecular motors, such as myosin and kinesin, perform diverse tasks ranging from vesical transport to bulk muscle contraction. Synthetic molecular motors may eventually be harnessed to perform similar tasks in versatile synthetic systems. The most promising type of synthetic molecular motor, the DNA walker, can undergo processive motion but generally exhibits low speeds and virtually no capacity for force generation. However, we recently showed that highly polyvalent DNA motors (HPDMs) can rival biological motors by translocating at micrometer per minute speeds and generating 100+ pN of force. Accordingly, DNA nanotechnology-based designs may hold promise for the creation of synthetic, force-generating nanomotors. However, the dependencies of HPDM speed and force on tunable design parameters are poorly understood and difficult to characterize experimentally. To overcome this challenge, we present RoloSim, an adhesive dynamics software package for fine-grained simulations of HPDM translocation. RoloSim uses biophysical models for DNA duplex formation and dissociation kinetics to explicitly model tens of thousands of molecular scale interactions. These molecular interactions are then used to calculate the nano-and microscale motions of the motor. We use RoloSim to uncover how motor force and speed scale with several tunable motor properties such as motor size and DNA duplex length. Our results support our previously defined hypothesis that force scales linearly with polyvalency. We also demonstrate that HPDMs can be steered with external force, and we provide design parameters for novel HPDM-based molecular sensor and nanomachine designs. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10613900
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry B
- Volume:
- 126
- Issue:
- 39
- ISSN:
- 1520-6106
- Page Range / eLocation ID:
- 7495 to 7509
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract DNA motors that consume chemical energy to generate processive mechanical motion mimic natural motor proteins and have garnered interest due to their potential applications in dynamic nanotechnology, biosensing, and drug delivery. Such motors translocate by a catalytic cycle of binding, cleavage, and rebinding between DNA “legs” on the motor body and RNA “footholds” on a track. Herein, we address the well‐documented trade‐off between motor speed and processivity and investigate how these parameters are controlled by the affinity between DNA legs and their complementary footholds. Specifically, we explore the role of DNA leg length and GC content in tuning motor performance by dictating the rate of leg‐foothold dissociation. Our investigations reveal that motors with 0 % GC content exhibit increased instantaneous velocities of up to 150 nm/sec, three‐fold greater than previously reported DNA motors and comparable to the speeds of biological motor proteins. We also demonstrate that the faster speed and weaker forces generated by 0 % GC motors can be leveraged for enhanced capabilities in sensing. We observe single‐molecule sensitivity when programming the motors to stall in response to the binding of nucleic acid targets. These findings offer insights for the design of high‐performance DNA motors with promising real‐world biosensing applications.more » « less
- 
            Cytoskeletal active nematics exhibit striking nonequilibrium dynamics that are powered by energy-consuming molecular motors. To gain insight into the structure and mechanics of these materials, we design programmable clusters in which kinesin motors are linked by a double-stranded DNA linker. The efficiency by which DNA-based clusters power active nematics depends on both the stepping dynamics of the kinesin motors and the chemical structure of the polymeric linker. Fluorescence anisotropy measurements reveal that the motor clusters, like filamentous microtubules, exhibit local nematic order. The properties of the DNA linker enable the design of force-sensing clusters. When the load across the linker exceeds a critical threshold, the clusters fall apart, ceasing to generate active stresses and slowing the system dynamics. Fluorescence readout reveals the fraction of bound clusters that generate interfilament sliding. In turn, this yields the average load experienced by the kinesin motors as they step along the microtubules. DNA-motor clusters provide a foundation for understanding the molecular mechanism by which nanoscale molecular motors collectively generate mesoscopic active stresses, which in turn power macroscale nonequilibrium dynamics of active nematics.more » « less
- 
            null (Ed.)Abstract Double-stranded DNA viruses package their genomes into pre-assembled capsids using virally-encoded ASCE ATPase ring motors. We present the first atomic-resolution crystal structure of a multimeric ring form of a viral dsDNA packaging motor, the ATPase of the asccφ28 phage, and characterize its atomic-level dynamics via long timescale molecular dynamics simulations. Based on these results, and previous single-molecule data and cryo-EM reconstruction of the homologous φ29 motor, we propose an overall packaging model that is driven by helical-to-planar transitions of the ring motor. These transitions are coordinated by inter-subunit interactions that regulate catalytic and force-generating events. Stepwise ATP binding to individual subunits increase their affinity for the helical DNA phosphate backbone, resulting in distortion away from the planar ring towards a helical configuration, inducing mechanical strain. Subsequent sequential hydrolysis events alleviate the accumulated mechanical strain, allowing a stepwise return of the motor to the planar conformation, translocating DNA in the process. This type of helical-to-planar mechanism could serve as a general framework for ring ATPases.more » « less
- 
            null (Ed.)In cells, cytoskeletal filament networks are responsible for cell movement, growth, and division. Filaments in the cytoskeleton are driven and organized by crosslinking molecular motors. In reconstituted cytoskeletal systems, motor activity is responsible for far-from-equilibrium phenomena such as active stress, self-organized flow, and spontaneous nematic defect generation. How microscopic interactions between motors and filaments lead to larger-scale dynamics remains incompletely understood. To build from motor–filament interactions to predict bulk behavior of cytoskeletal systems, more computationally efficient techniques for modeling motor–filament interactions are needed. Here, we derive a coarse-graining hierarchy of explicit and continuum models for crosslinking motors that bind to and walk on filament pairs. We compare the steady-state motor distribution and motor-induced filament motion for the different models and analyze their computational cost. All three models agree well in the limit of fast motor binding kinetics. Evolving a truncated moment expansion of motor density speeds the computation by 103–106 compared to the explicit or continuous-density simulations, suggesting an approach for more efficient simulation of large networks. These tools facilitate further study of motor–filament networks on micrometer to millimeter length scales.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    