skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Enhancing Preschool Spatial Skills: A Comprehensive Intervention Using Digital Games and Hands-On Activities
This paper describes the development and testing of a classroom and complementary home-based intervention to build preschoolers’ spatial orientation skills, focusing on exploring implementation feasibility and initial child learning outcomes. Spatial orientation, one type of spatial thinking, involves understanding the relationship between spatial positions, using maps and models to represent and navigate through space, and using spatial vocabulary. Evidence continues to accumulate that gaining spatial skills helps overall mathematics achievement and that learning resources are needed in this field. This mixed-methods study is the third in a series of investigations that leverage a design-based implementation research approach to develop preschool resources to support spatial orientation with both hands-on and technology-based experiences. Through a quasi-experimental comparison study, treatment teachers implemented eight weeks of hands-on activities, read-aloud stories, and digital activities (including an augmented reality app) and a sample of families also engaged in complementary home-based activities. The findings suggest that the resources help teachers feasibly implement spatial lessons, and preschoolers improve their learning of spatial concepts with the use of the classroom and home-based intervention.  more » « less
Award ID(s):
2048883
PAR ID:
10613970
Author(s) / Creator(s):
; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Education Sciences
Volume:
15
Issue:
6
ISSN:
2227-7102
Page Range / eLocation ID:
727
Subject(s) / Keyword(s):
preschool early childhood education technology mathematics spatial
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents the development and formative testing of a preschool spatial orientation intervention using a design-based implementation research (DBIR) approach. Over the course of eight weeks in both classroom and home settings, spatial language, navigation, and modelling skills are fostered through curriculum that incorporates books, hands-on activities, movement, and digital tools, including an augmented reality (AR) app. Co-design with teachers, user studies, and pilot testing informed iterative revisions to ensure usability, instructional support, and engagement for diverse learners. Findings indicate that the activities fill a curricular gap, promote spatial vocabulary and reasoning, and are generally well received by teachers, parents, and children. While the AR app shows promise for enhancing motivation and collaboration, challenges related to usability and scaffolding remain. This work contributes to early childhood STEM education by providing accessible, developmentally appropriate resources that support spatial thinking, especially for underserved communities, and offers insights into integrating technology effectively in preschool learning environments. 
    more » « less
  2. null (Ed.)
    This workshop will focus on how to teach data collection and analysis to preschoolers. Our project aims to promote preschoolers’ engagement with, and learning of, mathematics and computational thinking (CT) with a set of classroom activities that engage preschoolers in a data collection and analysis (DCA) process. To do this, the project team is engaging in an iterative cycle of development and testing of hands-on, play-based, curricular investigations with feedback from teachers. A key component of the intervention is a teacher-facing digital app (for teachers to use with students on touch-screen tablets) to support the collaboration of preschool teachers and children in collecting data, creating simple graphs, and using the graphs to answer real-world questions. The curricular investigations offer an applied context for using mathematical knowledge (i.e., counting, sorting, classifying, comparing, contrasting) to engage with real-world investigations and lay the foundation for developing flexible problem-solving skills. Each investigation follows a series of instructional tasks that scaffold the problem-solving process and includes (a) nine hands-on and play-based problem-solving investigations where children answer real-world questions by collecting data, creating simple graphs, and interpreting the graphs and. (b) a teacher- facing digital app to support specific data collection and organization steps (i.e., collecting, recording, visualizing). This workshop will describe: (1) the rationale and prior research conducted in this domain, (2) describe an intervention in development focused on data collection and analysis content for preschoolers that develop mathematical (common core standards) and computational thinking skills (K-12 Computational Thinking Framework Standards), (3) demonstrates an app in development that guides teacher and preschoolers through the investigation process and generates graphs to answer questions (NGSS practice standards), (4) report on feedback from a pilot study conducted virtually in preschool classrooms; and (5) describe developmentally appropriate practices for engaging young children in investigations, data collection, and data analysis. 
    more » « less
  3. Differences in children’s mathematics knowledge are evident at kindergarten entry, favoring children who have greater access to economic resources. Fostering preschoolers’ mathematics learning at home and in classroom settings, through games and other developmentally appropriate activities, is of great interest to educators, early childhood leaders, and policymakers. This cluster randomized trial examined the ef- fects of a naturalistic, game-based mathematics intervention implemented in Head Start classrooms and examined whether including a family math component added value. A total of 573 children (64% His- panic; 60% multilingual) were included from 66 classrooms which were randomly assigned to Classroom Math (CM), Classroom Math + Family Math (CM+FM), or business-as-usual (BAU). Results indicated that the family math component did add value to the classroom-based intervention as CM+FM resulted in a significant positive impact on children’s mathematics knowledge relative to BAU, but CM alone did not. For preschoolers age 50+ months, both interventions had significant effects on children’s mathemat- ics knowledge relative to BAU, but CM+FM had a stronger effect (d = .36). The number of math games played was significantly associated with higher mathematics scores and the number of family math mini- books returned had a significant impact on children’s spring scores, over and above the number of games played. The CM+FM intervention also had a significant effect on teachers’ instructional practice (d =.79). Adding a family math component to a game-based classroom intervention resulted in positive impacts for preschoolers and seems to be an effective, ecologically valid intervention that fosters early mathematical competencies. 
    more » « less
  4. To support preschool children’s learning about data in an applied way that allows children to leverage their existing mathematical knowledge (i.e. counting, sorting, classifying, comparing) and apply it to answering authentic, developmentally appropriate research questions with data. To accomplish this ultimate goal, a design-based research approach [1] was used to develop and test a classroom-based preschool intervention that includes hands-on, play-based investigations with a digital app that supports and scaffolds the investigation process for teachers and children. This formative study was part of a codesign process with teachers to elicit feedback on the extent to which the series of investigations focused on data collection and analysis (DCA) and the teacher-facing app were (a) developmentally appropriate, (b) aligned with current preschool curricula and routines, (c) feasible to implement, and (d) included design elements and technology affordances teachers felt were useful and anticipated to promote learning. Researchers conducted in-depth interviews (n=10) and an online survey (n=19) with preschool teachers. Findings suggest that teaching preschoolers how to collect and analyze data in a hands-on, play-based, and developmentally appropriate way is feasible and desirable for preschool teachers. Specifically, teachers reported that the initial conceptualization of the investigations were developmentally appropriate, aligned with existing curricular activities and goals, was adaptable for the age and developmental readiness of young children, and that the affordances of the technology are likely to allow preschool children to engage meaningfully in data collection, visualization, and analysis. Findings also suggest that this approach to supporting preschool teachers and children to learn about and conduct DCA merits further study to ensure productive curricular implementation that positively influences preschoolers’ learning. These findings were used to revise the investigations and app, which showed positive outcomes when used in classrooms [2], which add to the scant literature on DCA learning for pre-schoolers and provides insights into the best ways to integrate technology into the classroom. 
    more » « less
  5. While teachers are consistently asked to investigate new forms of technology, the use of computer-based games provides additional, unique issues. This research describes the changes in 12 elementary teachers' perceptions of games in the classroom after participating in an early algebra game-based intervention. Teachers implemented two computer-based games and one interactive tool as part of their daily mathematics lesson. They were also asked to guide their students through specific supplemental activities for out-of-game learning, which directly related to the content in the games. Surveys, classroom observations, self-reflection logs, and interviews documented teacher-student interaction during Math Snacks games. Findings reflect how the intervention changed teachers' views of games; their orientation to using inquiry in the classroom; their facilitation of technology; and their perception of including students with different abilities in gameplay. Participating teachers saw games as a tool to let students explore and introduce a topic with minimal initial guidance. Some teachers also noted the value of computer-based games in supporting low-performing students' integration and participation with the rest of the class. Teachers reported that students' collaboration and discussion skills were the primary competencies noticed while students were playing. Most of the teachers noted that their role as facilitators is essential n in the students' learning. 
    more » « less