skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 18, 2026

Title: ‘Need for speed: high throughput’ – mass spectrometry approaches for high-throughput directed evolution screening of natural product enzymes
In this review we highlight recent advancements in mass spectrometry that have allowed for more efficient, robust, and rigorous enzyme engineering for various applications relating to natural products chemistry.  more » « less
Award ID(s):
2220510
PAR ID:
10613989
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
RSC
Date Published:
Journal Name:
Natural Product Reports
Volume:
42
Issue:
6
ISSN:
0265-0568
Page Range / eLocation ID:
1037 to 1054
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Droplet‐based single cell sequencing technologies, such as inDrop, Drop‐seq, and 10X Genomics, are catalyzing a revolution in the understanding of biology. Barcoding beads are key components for these technologies. What is limiting today are barcoding beads that are easy to fabricate, can efficiently deliver primers into drops, and thus achieve high detection efficiency. Here, this work reports an approach to fabricate dissolvable polyacrylamide beads, by crosslinking acrylamide with disulfide bridges that can be cleaved with dithiothreitol. The beads can be rapidly dissolved in drops and release DNA barcode primers. The dissolvable beads are easy to synthesize, and the primer cost for the beads is significantly lower than that for the previous barcoding beads. Furthermore, the dissolvable beads can be loaded into drops with >95% loading efficiency of a single bead per drop and the dissolution of beads does not influence reverse transcription or the polymerase chain reaction (PCR) in drops. Based on this approach, the dissolvable beads are used for single cell RNA and protein analysis. 
    more » « less
  2. Augmented Reality (AR) enables elements of a computer-generated digital world to be integrated with a user’s perception of the physical world. Smart glasses, like smart phones, have independent operating systems and they can support a variety of different applications and modes of communication to support augmented reality. This paper details the development of a novel new application that extends a widely-used mobile app for phenotyping and allows agronomists to interact with the app while keeping their hands free to perform field work. The smart glasses accept voice commands from the user and communicate with the mobile phone app via Bluetooth. In addition, changes detected by the mobile phone are displayed to the user on the smart glasses. This enables agronomists to efficiently collect phenotypic data. 
    more » « less
  3. High-throughput sequencing (HTS) is a modern DNA sequencing technology used to rapidly read thousands of genomic fragments from microorganisms given a sample. The large amount of data produced by this process makes deep learning, whose performance often scales with dataset size, a suitable fit for processing HTS samples. While deep learning models have utilized sets of DNA sequences to make informed predictions, to our knowledge, there are no models in the current literature capable of generating synthetic HTS samples, a tool which could enable experimenters to predict HTS samples given some environmental parameters. Furthermore, the unordered nature of HTS samples poses a challenge to nearly all deep learning architectures because they have an inherent dependence on input order. To address this gap in the literature, we introduce DNA Generative Adversarial Set Transformer (DNAGAST), the first model capable of generating synthetic HTS samples.We qualitatively and quantitatively demonstrate DNAGAST’s ability to produce realistic synthetic samples and explore various methods to mitigate mode-collapse. Additionally, we propose novel quantitative diversity metrics to measure the effects of mode-collapse for unstructured set-based data. 
    more » « less
  4. Abstract Chemical looping is a promising approach for improving the energy efficiency of many industrial chemical processes. However, a major limitation of modern chemical looping technologies is the lack of suitable active materials to mediate the involved subreactions. Identification of suitable materials has been historically limited by the scarcity of high‐temperature (>600 °C) thermochemical data to evaluate candidate materials. An accuratethermodynamic approach is demonstrated here to rapidly identify active materials which is applicable to a wide variety of chemical looping chemistries. Application of this analysis to chemical looping combustion correctly classifies 17/17 experimentally studied redox materials by their viability and identifies over 1300 promising yet previously unstudied active materials. This approach is further demonstrated by analyzing redox pairs for mediating a novel chemical looping process for producing pure SO2from raw sulfur and air which could provide a more efficient and lower emission route to sulfuric acid. 12 promising redox materials for this process are identified, two of which are supported by previous experimental studies of their individual oxidation and reduction reactions. This approach provides the necessary foundation for connecting process design with high‐throughput material discovery to accelerate the innovation and development of a wide range of chemical looping technologies. 
    more » « less
  5. A green instrument-free approach to (bio)chemical analyses: cellulose acetate-based microwell plates as substitutes to plastic microwell plates. 
    more » « less