The excision of specific tRNA-derived small RNAs (tsRNAs), yRNA-derived small RNAs (ysRNAs) and ribosomal RNA-derived small RNAs (rsRNAs) is now well established. Several reports have suggested many of these fragments function much like traditional microRNAs (miRNAs). That said, whereas the expressions of the majority of appreciably expressed miRNAs in HCT116 colon cancer cells are significantly decreased in individual knockouts (KOs) of DROSHA, DGCR8, XPO5, and DICER, on average, only 3.5% of tsRNA, ysRNA, and rsRNA expressions are impaired. Conversely, tsRNA, ysRNA, and rsRNA expressions are significantly increased in each of these KOs as compared to WT. As such, although DICER has been suggested to be involved with the expression of specific tsRNAs, ysRNAs, and rsRNAs, our study finds no evidence supporting the involvement of any of these canonical miRNA biogenesis enzymes in their expressions.
more »
« less
Global Switch from DICER-dependent MicroRNA to DICER-independent SnoRNA-derived RNA Biogenesis in Malignancy
SnoRNAs are frequently processed into snoRNA-derived RNAs (sdRNAs) that function much like traditional microRNAs (miRNAs). That said, our analyses suggest a global switch from DICER-dependent (predominately miRNA) to DICER-independent (predominately sdRNA) biogenesis/gene regulation in colon cancer. Whereas the expressions of 259 of 288 appreciably expressed miRNAs are significantly decreased (avg. 6.4% of WT) in human colon cancer DICER-KOs, 95 of 103 sdRNAs are conversely, significantly increased (avg. 679.3%) in DICER-KOs as compared to WT. As many diseases are characterized by DICER deficiency, this putative global switch to DICER-independent sdRNA regulations may contribute to an array of human diseases.
more »
« less
- PAR ID:
- 10613991
- Publisher / Repository:
- microPublication Biology
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract In monocots other than maize (Zea mays) and rice (Oryza sativa), the repertoire and diversity of microRNAs (miRNAs) and the populations of phased, secondary, small interfering RNAs (phasiRNAs) are poorly characterized. To remedy this, we sequenced small RNAs (sRNA) from vegetative and dissected inflorescence tissue in 28 phylogenetically diverse monocots and from several early-diverging angiosperm lineages, as well as publicly available data from 10 additional monocot species. We annotated miRNAs, small interfering RNAs (siRNAs) and phasiRNAs across the monocot phylogeny, identifying miRNAs apparently lost or gained in the grasses relative to other monocot families, as well as a number of transfer RNA fragments misannotated as miRNAs. Using our miRNA database cleaned of these misannotations, we identified conservation at the 8th, 9th, 19th, and 3′-end positions that we hypothesize are signatures of selection for processing, targeting, or Argonaute sorting. We show that 21-nucleotide (nt) reproductive phasiRNAs are far more numerous in grass genomes than other monocots. Based on sequenced monocot genomes and transcriptomes, DICER-LIKE5, important to 24-nt phasiRNA biogenesis, likely originated via gene duplication before the diversification of the grasses. This curated database of phylogenetically diverse monocot miRNAs, siRNAs, and phasiRNAs represents a large collection of data that should facilitate continued exploration of sRNA diversification in flowering plants.more » « less
-
DAWDLE (DDL) is a conserved forkhead-associated (FHA) domain-containing protein with essential roles in plant development and immunity. It acts in the biogenesis of microRNAs (miRNAs) and endogenous small interfering RNAs (siRNAs), which regulate gene expression at the transcriptional and/or post-transcriptional levels. However, the functional mechanism of DDL and its impact on exogenous siRNAs remain elusive. Here we report that DDL is required for the biogenesis of siRNAs derived from sense transgenes and inverted-repeat transgenes. Furthermore, we show that a mutation in the FHA domain of DDL disrupts the interaction of DDL with DICER-LIKE1 (DCL1), which is the enzyme that catalyzes miRNA maturation from primary miRNA transcripts (pri-miRNAs), resulting in impaired pri-miRNA processing. Moreover, we demonstrate that DDL interacts with DCL3, which is a DCL1 homolog responsible for siRNA production, and this interaction is crucial for optimal DCL3 activity. These results reveal that the interaction of DDL with DCLs is required for the biogenesis of miRNAs and siRNAs in Arabidopsis.more » « less
-
Abstract MicroRNAs (miRNAs) are important regulators of genes expression. Their levels are precisely controlled through modulating the activity of the microprocesser complex (MC). Here, we report that JANUS, a homology of the conserved U2 snRNP assembly factor in yeast and human, is required for miRNA accumulation. JANUS associates with MC components Dicer-like 1 (DCL1) and SERRATE (SE) and directly binds the stem-loop of pri-miRNAs. In a hypomorphic janus mutant, the activity of DCL1, the numbers of MC, and the interaction of primary miRNA transcript (pri-miRNAs) with MC are reduced. These data suggest that JANUS promotes the assembly and activity of MC through its interaction with MC and/or pri-miRNAs. In addition, JANUS modulates the transcription of some pri-miRNAs as it binds the promoter of pri-miRNAs and facilitates Pol II occupancy of at their promoters. Moreover, global splicing defects are detected in janus. Taken together, our study reveals a novel role of a conserved splicing factor in miRNA biogenesis.more » « less
-
Summary MicroRNAs (miRNAs) are essential regulators of gene expression in metazoans and plants. In plants, most miRNAs are generated from primary miRNA transcripts (pri‐miRNAs), which are processed by the Dicer‐like 1 (DCL1) complex along with accessory proteins.Serrate‐Associated Protein 1 (SEAP1), a conserved splicing‐related protein, has been studied in human and yeast. However, the functions of SEAP1 in plants remain elusive.Lack ofSEAP1results in embryo lethality and knockdown ofSEAP1by an artificial miRNA (amiRSEAP1) causes pleiotropic developmental defects and reduction in miRNA accumulation. SEAP1 associates with the DCL1 complex, and may promote the interaction of the DCL1 complexes with pri‐miRNAs. SEAP1 also enhances pri‐miRNA accumulation, but does not affect pri‐miRNA transcription, suggesting it may indirectly or directly stabilize pri‐miRNAs. In addition, SEAP1 affects the splicing of some pri‐miRNAs and intron retention of messenger RNAs at global levels.Our findings uncover both conserved and novel functions of SEAP1 in plants. Besides the role as a splicing factor, SEPA1 may promote miRNA biogenesis by positively modulating pri‐miRNA splicing, processing and/or stability.more » « less
An official website of the United States government

