skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying Channel Mobility and Floodplain Reworking Timescales Across River Planform Morphologies
Abstract Source‐to‐sink transfer of sediment and organic carbon (OC) is regulated by river mobility. Quantifying trends in river mobility is, however, challenging due to diverse planform morphologies (e.g., meandering, braided) and measurement methods. Here, we utilize a remote‐sensing method applicable to all planform morphologies to quantify the mobility timescales of 80 rivers worldwide. Results show that, across the continuum from meandering to braided rivers, there is a systematic reduction in the timescales of channel mobility and—to a lesser extent—floodplain reworking. This leads to a decrease in the efficiency with which braided rivers rework old floodplain material compared to their meandering counterparts. Reduced floodplain reworking efficiency of braided rivers leads to smaller channel‐belt areas relative to their size. Results suggest that river‐mobility timescales derived from remote sensing can aid in the characterization of sediment and OC storage and transit times at a global scale.  more » « less
Award ID(s):
2310740
PAR ID:
10614139
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
12
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rivers are the primary conduits of water and sediment across Earth's surface. In recent decades, rivers have been increasingly impacted by climate change and human activities. The availability of global‐coverage satellite imagery provides a powerful avenue to study river mobility and quantify the impacts of these perturbations on global river behavior. However, we lack remote sensing methods for quantifying river mobility that can be generally applied across the diversity of river planforms (e.g., meandering, braided) and fluvial processes (e.g., channel migration, avulsion). Here, we upscale area‐based methods from laboratory flume experiments to build a generalized remote sensing framework for quantifying river mobility. The framework utilizes binary channel‐mask time series to determine time‐ and area‐integrated rates and scales of river floodplain reworking and channel‐thread reorganization. We apply the framework to numerical models to demonstrate that these rates and scales are sensitive to specific river processes (channel migration, channel‐bend cut‐off, and avulsion). We then apply the framework to natural migrating and avulsing rivers with meandering and braided planforms. Results show that our area‐based framework provides an objective and accurate means to quantify river mobility at reach‐ to floodplain‐scales, which is largely insensitive to spatial and temporal biases that can arise in traditional mobility metrics. Our work provides a framework for investigating global controls on river mobility, testing hypotheses about river response to environmental gradients, and quantifying the timescales of terrestrial organic carbon cycling. 
    more » « less
  2. Abstract Mobile river channels endanger human life and property and over centuries shape ecosystems, landscapes, and stratigraphy. Quantifying channel movements from remote sensing is difficult, in part due to the diversity of river mobility processes (e.g., channel migration, cutoffs, avulsion) and planform morphologies (e.g., meandering, braided). Here, we present a framework for quantifying riverbank migration from remote sensing that upscales recent methodological advances from laboratory flume studies utilizing particle image velocimetry (PIV). We apply PIV to image time series of 21 rivers worldwide, showing PIV ignores cutoff and avulsion processes by design and is well suited for tracking riverbank migration regardless of planform morphology. We show that PIV‐derived results for riverbank migration are consistent with published results from centerline‐ and bank‐based Lagrangian methods. Unlike existing methods, PIV offers a grid‐based Eulerian framework where defining channel centerlines is unnecessary and quantified uncertainty in riverbank positions is propagated into uncertainty in migration rates. PIV offers means to efficiently extract global patterns in riverbank migration from decades of satellite data, as well as investigate river response to climate change and human activities in our rapidly changing world. 
    more » « less
  3. Abstract Channel planform patterns arise from internal dynamics of sediment transport and fluid flow in rivers and are affected by external controls such as valley confinement. Understanding whether these channel patterns are preserved in the rock record has critical implications for our ability to constrain past environmental conditions. Rivers are preserved as channel belts, which are one of the most ubiquitous and accessible parts of the sedimentary record, yet the relationship between river and channel-belt planform patterns remains unquantified. We analyzed planform patterns of rivers and channel belts from 30 systems globally. Channel patterns were classified using a graph theory-based metric, the Entropic Braided Index (eBI), which quantifies the number of river channels by considering the partitioning of water and sediment discharge. We find that, after normalizing by river size, channel-belt width and wavelength, amplitude, and curvature of the belt edges decrease with increasing river channel number (eBI). Active flow in single-channel rivers occupies as little as 1% of the channel belt, while in multichannel rivers it can occupy >50% of the channel belt. Moreover, we find that channel patterns lie along a continuum of channel numbers. Our findings have implications for studies on river and floodplain interaction, storage timescales of floodplain sediment, and paleoenvironmental reconstruction. 
    more » « less
  4. Abstract Understanding drivers of river mobility—temporal shifts in river channel positions—is critical for managing fluvial landscapes sustainably and for interpreting past river responses to climate change. However, direct observations linking river mobility and water discharge variability are scarce. Here, we pair multi‐annual measurements of daily water discharge and river mobility, estimated from Landsat, for 48 rivers worldwide. We show that, across climates and planforms, river mobility is correlated with water discharge variability over daily, intra‐annual, and inter‐annual timescales. For similar mean discharge, higher discharge variability is associated with up to an order‐of‐magnitude faster floodplain reworking. A random forest regression model indicates that discharge variability is the primary predictor of river mobility, when compared to mean water discharge, sediment concentration, and channel‐bed slope. Our results suggest that enhanced hydro‐climatic extremes could accelerate future river mobility, and that past changes to discharge variability may explain the fabric of fluvial strata. 
    more » « less
  5. Abstract A Silurian shift in fluvial stratigraphic architecture, coincident with the appearance of terrestrial vegetation in the fossil record, is traditionally cited as evidence for exclusively shallow, braided planforms in pre‐vegetation rivers. While recent recognition of deep, single‐thread channels in pre‐Silurian strata challenge this paradigm, it is unclear how these rivers maintained stable banks. Here, we reconstruct paleohydraulics and channel planform from fluvial cross‐strata of the 1.2 Ga Stoer Group. These deposits are consistent with deep (4–7 m), low‐sloping rivers (2.7 × 10−4to 4.5 × 10−5), similar in morphometry to modern single‐thread rivers. We show that reconstructed bank shear stresses approximate the cohesion provided by sand‐mud mixtures with 30%–45% mud—consistent with Stoer floodplain facies composition. These results indicate that sediment cohesion from mud alone could have fostered deep, single‐thread, pre‐vegetation rivers. We suggest that the Silurian stratigraphic shift could mark a kinematic change in channel migration rate rather than a diversification of planform. 
    more » « less