We propose and demonstrate a general design method for refractive two-element systems enabling variable optical performance between two specified boundary conditions. Similar to the Alvarez lens, small, relative lateral shifts in opposite directions are applied to a pair of plano-freeform elements. The surface prescriptions of the boundary lenses and a maximum desired shift between freeform plates are the main design inputs. In contrast to previous approaches, this method is not limited to boundaries with similar optical functions and can enable a wide range of challenging, dynamic functions for both imaging and non-imaging applications. Background theory and design processes are presented both for cases that are conducive to analytical surface descriptions, as well as for non-analytic surfaces that must be described numerically. Multiple examples are presented to demonstrate the flexibility of the proposed method.
more »
« less
All-reflective freeform microscope objective for ultra-broadband microscopy
Conventional refractive microscope objective lenses have limited applicability to a range of imaging modalities due to the dispersive nature of their optical elements. Designing a conventional refractive microscope objective that provides well-corrected imaging over a broad spectral range can be challenging, if not impossible. In contrast, reflective optics are inherently achromatic, so a system composed entirely of reflective elements is free from chromatic aberrations and, as a result, can image over an ultra-wide spectral range with perfect color correction. This study explores the design space of unobscured high numerical aperture, all-reflective microscope objectives. In particular, using freeform optical elements we obviate the need for a center obscuration, rendering the objective’s modulation transfer function comparable to that of refractive lens systems of similar numerical aperture. We detail the design process of the reflective objective, from determining the design specifications to the system optimization and sensitivity analysis. The outcome is an all-reflective freeform microscope objective lens with a 0.65 numerical aperture that provides diffraction-limited imaging and is compatible with the geometric constraints of commercial microscope systems.
more »
« less
- PAR ID:
- 10614200
- Publisher / Repository:
- Optica Publishing Group
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 32
- Issue:
- 27
- ISSN:
- 1094-4087
- Page Range / eLocation ID:
- 47893
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hahlweg, Cornelius F.; Mulley, Joseph R. (Ed.)Increasing depth of field in imaging systems can be beneficial, particularly for systems with high numerical apertures and short depth of field, such as microscopy. Extending depth of field has been previously demonstrated, for example, using non-rotationally symmetric (freeform) components such as cubic and logarithmic phase plates. Such fixed phase plates are generally designed for a specific optical system, so a different phase plate is required for each system. Methods that enable variable extended depth of field for multiple optical systems could provide benefits by reducing the number of required components and costs. In this paper, we explore the design of a single pair of transmissive freeform surfaces to enable extended depth of field for multiple lenses with different numerical apertures through relative translation of the freeform components. This work builds on the concept of an Alvarez lens, in which one pair of transmissive XY-polynomial freeform surfaces generates variable optical power through lateral relative shifts between the surfaces. The presented approach is based on the design of multiple fixed phase plates to optimize the through-focus Modulation Transfer Function (MTF) for imaging lenses of given numerical apertures. The freeform surface equation for the desired variable phase plate pair is then derived and the relative shift amounts between the freeform surfaces are calculated to enable extended depth of field for multiple imaging lenses with different numerical aperture values. Design approaches and simulation results will be discussed. © (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only. Citation Download Citation Sara Moein and Thomas J. Suleski "Variable extended depth of field imaging using freeform optics", Proc. SPIE 11483, Novel Optical Systems, Methods, and Applications XXIII, 114830G (21 August 2020); https://doi.org/10.1117/12.2568723more » « less
-
Marshall, Heather K; Spyromilio, Jason; Usuda, Tomonori (Ed.)We present the optical design for Cryoscope, a 0.26 m aperture telescope that is a f/2 objective operating over the photometric K band (1.99 to 2.55 μm) with diffraction limited imaging. It has a 16 deg2 FoV with a 7.1′′/pix plate scale on a 2048×2048 18 μm/pixel Teledyne H2RG detector array. The objective is a catadioptric design incorporating two thin fused silica meniscus lenses near the entrance aperture, a spherical primary mirror, and a doublet immediately in front of the detector to flatten the image surface. The design solution is capable of delivering diffraction limited images over a 10° field diameter at f/1.25 in the NIR. The use of fused silica for the first two lens elements allows the design to be used for a broad range of applications from the vacuum ultraviolet to thermal IR with only re-optimization of the field flattening doublet. In the VUV (185 to 300 nm) the design is no longer diffraction limited, but can still be made to be pixel limited with detector arrays having pixels as small as 10 μm. The design provides a compact, wide field, and fast objective that can scale to a 1 m-class telescope and offers several benefits over a classical Schmidt telescope. The convex fused silica meniscus lens is strong enough to serve as a vacuum window allowing the entire optical path to be cryogenically cooled to maintain low thermal emission while delivering two orders of magnitude larger field of view than previous ground-based designs for the thermal infrared.more » « less
-
Optical imaging with nanoscale resolution and a large field of view is highly desirable in many research areas. Unfortunately, it is challenging to achieve these two features simultaneously while using a conventional microscope. An objective lens with a low numerical aperture (NA) has a large field of view but poor resolution. In contrast, a high NA objective lens will have a higher resolution but reduced field of view. In an effort to close the gap between these trade-offs, we introduce an acoustofluidic scanning nanoscope (AS-nanoscope) that can simultaneously achieve high resolution with a large field of view. The AS-nanoscope relies on acoustofluidic-assisted scanning of multiple microsized particles. A scanned 2D image is then compiled by processing the microparticle images using an automated big-data image algorithm. The AS-nanoscope has the potential to be integrated into a conventional microscope or could serve as a stand-alone instrument for a wide range of applications where both high resolution and large field of view are required.more » « less
-
Freeform optical components enable significant advances for optical systems. A major challenge for freeform optics is the current lack of metrology methods with measurement uncertainty on the order of tens of nanometers or less. Towards addressing this challenge, optical coherence tomography (OCT) is a viable technique. In the context of low uncertainty metrology, the design requirements pertaining to the sample arm of an OCT metrology system are explicitly addressed in this paper. Two telecentric, broadband, diffraction limited, custom objective lens designs are presented with their design strategies. One objective lens was fabricated and experimentally tested for wavefront performance and telecentricity. This lens demonstrates near diffraction limited performance and a maximum deviation from telecentricity of 8.7 arcseconds across the full field of view, correlating to measurement uncertainty of less than 12 nm in simulation. The telecentricity test method developed completes the loop with respect to the design requirements and strategies presented and provides further intuition for telecentric lens designs in general. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreementmore » « less
An official website of the United States government

