skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Suprathermal Outflowing H + Ions in the Lobe Driven by an Interplanetary Shock: 1. An Observation Event
Abstract To better understand how sharp changes in the solar wind and interplanetary magnetic field conditions affect the ionosphere outflows at high latitudes, we analyze an event observed on 17 July 2002 showing suprathermal (tens to hundreds of eV) outflowing H+ions in the lobe driven by the impact of an interplanetary (IP) shock. A spacecraft in the lobe at altitudes of ∼6.5REfirst observed enhanced downward DC Poynting fluxes ∼2 min after the shock impact and then, another 8 min later, the appearance of suprathermal outflowing H+ions as ion beams and ion conics. The increasing downward DC Poynting fluxes and the increasing outflowing H+fluxes that appeared later were highly correlated because they shared a similar increasing trend with a time scale of ∼5 min. To explain such time delay and correlation, we conclude that a plausible scenario was that the enhanced DC Poynting fluxes reached down to lower altitudes, drove processes to accelerate the pre‐existing polar wind ions to ion beams and ion conics, and then these newly generated suprathermal ions flowed upward to the spacecraft altitudes. This event indicates that an IP shock can drive a significant amount of suprathermal H+outflows from the polar cap.  more » « less
Award ID(s):
2224108 2224109
PAR ID:
10614287
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
129
Issue:
9
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We conduct a global hybrid simulation of an observation event to affirm that an interplanetary (IP) shock can drive significant suprathermal (tens to hundreds of eV) H+outflows from the polar cap. The event showed that a spacecraft in the lobe at ∼6.5 REaltitude above the polar cap observed the appearance of suprathermal outflowing H+ions about 8 min after observing enhanced downward DC Poynting fluxes caused by the shock impact. The simulation includes H+ions from both the solar wind and the ionospheric sources. The cusp/mantle region can be accessed by ions from both sources, but only the outflow ions can get into the lobe. Despite that upward flowing solar wind ions can be seen within part of the cusp/mantle region and their locations undergo large transient changes in response to the magnetosphere compression caused by the shock impact, the simulation rules out the possibility that the observed outflowing H+ions was due to the spacecraft encountering the moving cusp/mantle. On the other hand, the enhanced downward DC Poynting fluxes caused by the shock impact drive more upward suprathermal outflows, which reach higher altitudes a few minutes later, explaining the observed time delay. Also, these simulated outflowing ions become highly field‐aligned in the upward direction at high altitudes, consistent with the observed energy and pitch‐angle distributions. This simulation‐observation comparison study provides us the physical understanding of the suprathermal outflow H+ions coming up from the polar cap. 
    more » « less
  2. Abstract Interplanetary (IP) shock‐driven sudden compression of the Earth's magnetosphere produces electromagnetic disturbances in the polar ionosphere. Several studies have examined the effects of IP shock on magnetosphere‐ionosphere coupling systems using all‐sky cameras and radars. In this study, we examine responses and drivers of the polar ionosphere following an IP shock compression on 16 June 2012. We observe the vertical drift and concurrent horizontal motion of the plasma. Observations from digisonde located at Antarctic Zhongshan station (ZHO) showed an ionospheric thickEregion ionization and associated vertical downward plasma motion atFregion. In addition, horizontal ionospheric convection reversals were observed on the Super Dual Auroral Radar Network ZHO and McMurdo radar observations. Findings suggest that the transient convective reversal breaks the original shear equilibrium, it is expected that the IP shock‐induced electric field triggers an enhanced velocity shear mapping to theEregion. The horizontal motion of the plasma was attributed to only the dusk‐to‐dawn electric field that existed during the preliminary phase of sudden impulse. We also found that ionospheric convection reversals were driven by a downward field‐aligned current. The results of these observations reveal, for the first time, the immediate and direct cusp ionosphere response to the IP shock, which is critical for understanding the global response of the magnetosphere following an abrupt change in Interplanetory Magnetic Field (IMF) and solar wind conditions. 
    more » « less
  3. Abstract We investigate a 15‐day period in October 2011. Auroral observations by the Special Sensor Ultraviolet Spectrographic Imager instrument onboard the Defense Meteorological Satellite Program F16, F17, and F18 spacecraft indicate that the polar regions were covered by weak cusp‐aligned arc (CAA) emissions whenever the interplanetary magnetic field (IMF) clock angle was small, |θ| < 45°, which amounted to 30% of the time. Simultaneous observations of ions and electrons in the tail by the Cluster C4 and Geotail spacecraft showed that during these intervals dense (≈1 cm−3) plasma was observed, even as far from the equatorial plane of the tail as |ZGSE| ≈ 13RE. The ions had a pitch angle distribution peaking parallel and antiparallel to the magnetic field and the electrons had pitch angles that peaked perpendicular to the field. We interpret the counter‐streaming ions and double loss‐cone electrons as evidence that the plasma was trapped on closed field lines, and acted as a source for the CAA emission across the polar regions. This suggests that the magnetosphere was almost entirely closed during these periods. We further argue that the closure occurred as a consequence of dual‐lobe reconnection. Our finding forces a significant re‐evaluation of the magnetic topology of the magnetosphere during periods of northwards IMF. 
    more » « less
  4. Abstract One of the major processes that solar wind drives is the outflow and escape of ions from the planetary atmospheres. The major ion species in the upper ionospheres of both Earth and Mars is O+, and hence it is more likely to dominate the escape process. On Earth, due to a strong intrinsic magnetic field, the major ion outflow pathways are through the cusp, polar cap, and the auroral oval. In contrast, Mars has an induced magnetosphere, where the ionosphere is in direct contact with the shocked solar wind plasma. Therefore, physical processes underlying the ion energization and escape rates are expected to be different on Mars as compared to Earth. In the current work, we study the near-simultaneous ion outflow event from both Earth and Mars during the passage of a stream interaction region/high-speed stream (SIR/HSS) during 2016 May, when both the planets were approximately aligned on the same side of the Sun. The SIR/HSS propagation was recorded by spacecraft at the Sun–Earth L1 point and Mars Express at 1.5 au. During the passage of the SIR, the dayside and nightside ion outflows at Earth were observed by Van Allen Probes and Magnetospheric Multiscale Mission orbiters, respectively. At Mars, the ion energization at different altitudes was observed by the STATIC instrument on board the MAVEN orbiter. We observe evidence for the enhanced ion outflow from both Earth and Mars during the passage of the SIR, and identify the dominant drivers of the ion outflow. 
    more » « less
  5. Abstract The magnetotail lobe region at Mercury is characterized by low plasma density and low magnetic field variability compared to the nightside magnetosheath and central plasma sheet. At Mercury, as well as other planets, lobe magnetic fields play a crucial role in storing and releasing magnetic flux in response to changing upstream solar wind conditions such as interplanetary magnetic field (IMF) orientation and solar wind dynamic pressure (Pdyn). This makes the region significant for studying the magnetospheric interaction with the intense solar wind conditions at Mercury's orbit. Here, we identify and analyze magnetotail lobe observations made by the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft during its 4 years orbital phase. We empirically determined a set of criteria using magnetometer (MAG) and the Fast Imaging Plasma Spectrometer instruments onboard MESSENGER to identify lobe magnetic field intervals. From 3,332 MESSENGER orbits, we identify 1,242 lobe field intervals. We derive an expression for the average lobe magnetic field strength in nanotesla with respect to radial distance downtail:Blobe(r) = (135 ± 8) * r(−2.1±0.3) + (31 ± 8). The lobe magnetic field exhibits both small‐scale (∼3 min) and orbit‐to‐orbit (∼8–12 hr) variability in magnetic field strength compared to this averaged field strength expression. The orbit‐to‐orbit variability in lobe field strength is not significantly correlated with estimated IMF orientation, but is directly correlated withPdyn. Thus, our findings provide evidence for the pressure balance between the inward facingPdynon the nightside magnetopause and the outward facing magnetic pressure supplied by the lobes. 
    more » « less