Summary Phylogenetic association analysis plays a crucial role in investigating the correlation between microbial compositions and specific outcomes of interest in microbiome studies. However, existing methods for testing such associations have limitations related to the assumption of a linear association in high-dimensional settings and the handling of confounding effects. Hence, there is a need for methods capable of characterizing complex associations, including nonmonotonic relationships. This article introduces a novel phylogenetic association analysis framework and associated tests to address these challenges by employing conditional rank correlation as a measure of association. The proposed tests account for confounders in a fully nonparametric manner, ensuring robustness against outliers and the ability to detect diverse dependencies. The proposed framework aggregates conditional rank correlations for subtrees using weighted sum and maximum approaches to capture both dense and sparse signals. The significance level of the test statistics is determined by calibration through a nearest-neighbour bootstrapping method, which is straightforward to implement and can accommodate additional datasets when these are available. The practical advantages of the proposed framework are demonstrated through numerical experiments using both simulated and real microbiome datasets.
more »
« less
CAT: a conditional association test for microbiome data using a permutation approach
Abstract In microbiome analysis, researchers often seek to identify taxonomic features associated with an outcome of interest. However, microbiome features are intercorrelated and linked by phylogenetic relationships, making it challenging to assess the association between an individual feature and an outcome. This paper proposes a novel conditional association test, CAT, that can account for other features and phylogenetic relatedness when testing the association between a feature and an outcome. CAT adopts a permutation approach, measuring the importance of a feature in predicting the outcome by permuting operational taxonomic unit/amplicon sequence variant counts belonging to that feature from the data and quantifying how much the association with the outcome is weakened through the change in the coefficient of determination $$R^{2}$$. Compared with marginal association tests, it focuses on the added value of a feature in explaining outcome variation that is not captured by other features. By leveraging global tests including PERMANOVA and MiRKAT-based methods, CAT allows association testing for continuous, binary, categorical, count, survival, and correlated outcomes. We demonstrate through simulation studies that CAT can provide a direct quantification of feature importance that is distinct from that of marginal association tests, and illustrate CAT with applications to two real-world studies on the microbiome in melanoma patients: one examining the role of the microbiome in shaping immunotherapy response, and one investigating the association between the microbiome and survival outcomes. Our results illustrate the potential of CAT to inform the design of microbiome interventions aimed at improving clinical outcomes.
more »
« less
- Award ID(s):
- 2310955
- PAR ID:
- 10614498
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Briefings in Bioinformatics
- Volume:
- 26
- Issue:
- 4
- ISSN:
- 1467-5463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT In this paper, we propose Varying Effects Regression with Graph Estimation (VERGE), a novel Bayesian method for feature selection in regression. Our model has key aspects that allow it to leverage the complex structure of data sets arising from genomics or imaging studies. We distinguish between the predictors, which are the features utilized in the outcome prediction model, and the subject-level covariates, which modulate the effects of the predictors on the outcome. We construct a varying coefficients modeling framework where we infer a network among the predictor variables and utilize this network information to encourage the selection of related predictors. We employ variable selection spike-and-slab priors that enable the selection of both network-linked predictor variables and covariates that modify the predictor effects. We demonstrate through simulation studies that our method outperforms existing alternative methods in terms of both feature selection and predictive accuracy. We illustrate VERGE with an application to characterizing the influence of gut microbiome features on obesity, where we identify a set of microbial taxa and their ecological dependence relations. We allow subject-level covariates, including sex and dietary intake variables to modify the coefficients of the microbiome predictors, providing additional insight into the interplay between these factors.more » « less
-
Serology and molecular tests are the two most commonly used methods for rapid COVID-19 infection testing. The two types of tests have different mechanisms to detect infection, by measuring the presence of viral SARS-CoV-2 RNA (molecular test) or detecting the presence of antibodies triggered by the SARS-CoV-2 virus (serology test). A handful of studies have shown that symptoms, combined with demographic and/or diagnosis features, can be helpful for the prediction of COVID-19 test outcomes. However, due to nature of the test, serology and molecular tests vary significantly. There is no existing study on the correlation between serology and molecular tests, and what type of symptoms are the key factors indicating the COVID-19 positive tests. In this study, we propose a machine learning based approach to study serology and molecular tests, and use features to predict test outcomes. A total of 2,467 donors, each tested using one or multiple types of COVID-19 tests, are collected as our testbed. By cross checking test types and results, we study correlation between serology and molecular tests. For test outcome prediction, we label 2,467 donors as positive or negative, by using their serology or molecular test results, and create symptom features to represent each donor for learning. Because COVID-19 produces a wide range of symptoms and the data collection process is essentially error prone, we group similar symptoms into bins. This decreases the feature space and sparsity. Using binned symptoms, combined with demographic features, we train five classification algorithms to predict COVID-19 test results. Experiments show that XGBoost achieves the best performance with 76.85% accuracy and 81.4% AUC scores, demonstrating that symptoms are indeed helpful for predicting COVID-19 test outcomes. Our study investigates the relationship between serology and molecular tests, identifies meaningful symptom features associated with COVID-19 infection, and also provides a way for rapid screening and cost effective detection of COVID-19 infection.more » « less
-
ABSTRACT The central aims of many host or environmental microbiome studies are to elucidate factors associated with microbial community compositions and to relate microbial features to outcomes. However, these aims are often complicated by difficulties stemming from high-dimensionality, non-normality, sparsity, and the compositional nature of microbiome data sets. A key tool in microbiome analysis is beta diversity, defined by the distances between microbial samples. Many different distance metrics have been proposed, all with varying discriminatory power on data with differing characteristics. Here, we propose a compositional beta diversity metric rooted in a centered log-ratio transformation and matrix completion called robust Aitchison PCA. We demonstrate the benefits of compositional transformations upstream of beta diversity calculations through simulations. Additionally, we demonstrate improved effect size, classification accuracy, and robustness to sequencing depth over the current methods on several decreased sample subsets of real microbiome data sets. Finally, we highlight the ability of this new beta diversity metric to retain the feature loadings linked to sample ordinations revealing salient intercommunity niche feature importance. IMPORTANCE By accounting for the sparse compositional nature of microbiome data sets, robust Aitchison PCA can yield high discriminatory power and salient feature ranking between microbial niches. The software to perform this analysis is available under an open-source license and can be obtained at https://github.com/biocore/DEICODE ; additionally, a QIIME 2 plugin is provided to perform this analysis at https://library.qiime2.org/plugins/q2-deicode .more » « less
-
null (Ed.)Headlines play an important role in both news audiences' attention decisions online and in news organizations’ efforts to attract that attention. A large body of research focuses on developing generally applicable heuristics for more effective headline writing. In this work, we measure the importance of a number of theoretically motivated textual features to headline performance. Using a corpus of hundreds of thousands of headline A/B tests run by hundreds of news publishers, we develop and evaluate a machine-learned model to predict headline testing outcomes. We find that the model exhibits modest performance above baseline and further estimate an empirical upper bound for such content-based prediction in this domain, indicating an important role for non-content-based factors in test outcomes. Together, these results suggest that any particular headline writing approach has only a marginal impact, and that understanding reader behavior and headline context are key to predicting news attention decisions.more » « less
An official website of the United States government
