skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Source to sink in precolonial Jamaica: Tracing geochemistry and mineralogy from the rocks to the pots in understanding White Marl pottery production and exchange
Award ID(s):
2208558
PAR ID:
10614535
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Archaeological Science: Reports
Volume:
61
Issue:
C
ISSN:
2352-409X
Page Range / eLocation ID:
104899
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present predictions for the evolution of the galaxy dust-to-gas ratio (DGR) and dust-to-metal ratio (DTM) from z = 0 → 6, using a model for the production, growth, and destruction of dust grains implemented into the simba cosmological hydrodynamic galaxy formation simulation. In our model, dust forms in stellar ejecta, grows by the accretion of metals, and is destroyed by thermal sputtering and supernovae. Our simulation reproduces the observed dust mass function at z = 0, but modestly underpredicts the mass function by ∼×3 at z ∼ 1–2. The z = 0 DGR versus metallicity relationship shows a tight positive correlation for star-forming galaxies, while it is uncorrelated for quenched systems. There is little evolution in the DGR–metallicity relationship between z = 0 and 6. We use machine learning techniques to search for the galaxy physical properties that best correlate with the DGR and DTM. We find that the DGR is primarily correlated with the gas-phase metallicity, though correlations with the depletion time-scale, stellar mass, and gas fraction are non-negligible. We provide a crude fitting relationship for DGR and DTM versus the gas-phase metallicity, along with a public code package that estimates the DGR and DTM given a set of galaxy physical properties. 
    more » « less
  2. null (Ed.)