skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: The case for schismogenesis between Late Developmental Northern Rio Grande and Chacoan communities in Northern New Mexico
Award ID(s):
2208558
PAR ID:
10614536
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Anthropological Archaeology
Volume:
77
Issue:
C
ISSN:
0278-4165
Page Range / eLocation ID:
101635
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. During Expedition 357, cores were recovered from two sites in the northern area of Atlantis Massif: Sites M0070 and M0074 (Figure F1; Table T1). Newly acquired multibeam data, combined with preexisting data sets, were evaluated prior to each site to guide the drill teams regarding the anticipated seabed conditions and slope. 
    more » « less
  2. Abstract Global change has created less stable forest systems and given urgency to understanding limitations to the establishment of tree seedlings beyond current range boundaries. We quantified trends in 13 years of annual northern red oak (QURU) seedling survival data for 1733 marked individuals at a local species distribution boundary within the northern hardwood forest in New Hampshire, USA. Over the study period, the median distance of seedlings into the valley did not change, although there was a net gain of 89 plots (5 m2) occupied. For a subset of seedlings that were marked in their year of birth (N = 937), we examined relationships among terrain, vegetation community, and initial individual seedling traits, and evaluated their effects on time to seedling mortality using a parametric accelerated failure time model. The year of seedling germination had the largest effect on survival with increasing mortality rates for seedlings from more recent cohorts. Seedlings had longer survival times where oak seedling densities were lower, shrub cover was higher, and when the acorn remained attached. Additionally, survival time was increased in higher elevation plots, which were also located further into the valley. Interannual seedling survival (N = 1580) was strongly impacted by seedling condition in the previous year, particularly leaf number and amount of leaf damage. Most seedling deaths occurred over winter, and seedlings failed to break bud the following spring. Interannual variation in seasonal climate, particularly deep, heavy snowpack in 2019 followed by drought conditions in 2020, coincided with recent elevated mortality. Overall, the median survival time of 3–4 years and the rapid turnover of the oak seedling population currently limit ability for expansion, although the net gain of occupied plots and increase in survival at higher elevation plots with lower QURU densities present some mechanisms that could promote expansion if the current suboptimal understory conditions shift to favor QURU. 
    more » « less
  3. Abstract This study identifies the fast (i.e.,days–weeks) transport pathways that connect the Northern Hemisphere surface to the upper troposphere and lower stratosphere (UTLS) during northern summer by integrating a large (90 member) ensemble of Boundary Impulse Response tracers in the Whole Atmosphere Community Climate Model version 5. We show that there is a fast transport pathway that occurs over the southern slope of the Tibetan Plateau, northern India, the Arabian Sea, and Saudi Arabia; furthermore, we show that during July this pathway connects the Northern Hemisphere surface to the UTLS on a modal time scale of 5–10 days. A less efficient transport pathway is also identified over the western Pacific. A detailed budget analysis reveals that, while convective processes are responsible for transport to 200–300 hPa, the resolved dynamics, specifically the vertical eddy flux, dominate at 100–150 hPa. Transport variations are analyzed on weekly, monthly, and interannual time scales and are largely related to differences in the resolved dynamics in the UTLS. 
    more » « less