skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 10, 2026

Title: Reproductive anatomy and embryogenesis of a viviparous, phonotactic, parasitoid fly
Abstract Ormia ochracea (Bigot 1889) is a phonotactic parasitoid fly that targets a variety of field cricket species as hosts for their developing young. Female flies locate their hosts by tracking a male cricket’s courtship song. Viviparous larvae are then deposited on or near the host which they then pierce and penetrate, completing larval development within the cricket’s abdomen. Here, we describe Ormia male and female reproductive tracts exposed through micro-surgery and imaged with a variety of microscopic techniques. We also describe for the first time, both embryonic and early larval development that takes place within the female flies’ “uterus.” Special note is made of the phenomenon of intra-uterine embryonic growth, and prospects for accessing gametes or germ-cells for molecular engineering are discussed.  more » « less
Award ID(s):
2144831
PAR ID:
10614552
Author(s) / Creator(s):
; ; ;
Editor(s):
Onstad, David
Publisher / Repository:
Oxford Academic
Date Published:
Journal Name:
Annals of the Entomological Society of America
ISSN:
0013-8746
Subject(s) / Keyword(s):
parasitoid, fly, embryo, development, uterus
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In parasitoid systems, resource competition can significantly impact developmental outcomes. This study investigates how larval competition and host characteristics influence development in the acoustic parasitoid fly Ormia ochracea, using the house cricket Acheta domesticus as a host. We experimentally manipulated larval load (1 vs. 2 larvae per host) and recorded host sex and size to assess their effects on pupation and eclosion (adult hatching) success, as well as pupal and adult fly size. While double infestations increased total yield (0.78 vs. 0.54 flies per host), larvae developing without competition exhibited higher relative pupation and eclosion success and produced larger pupae and adult flies, indicating greater individual fitness. Although female host crickets yielded larger pupae, resource competition was the dominant factor shaping developmental outcomes. These results highlight the trade-offs between reproductive yield and offspring fitness driven by resource competition and validate the commercially available A. domesticus as a viable host. 
    more » « less
  2. Abstract Animals eavesdrop on signals and cues generated by prey, predators, hosts, parasites, competing species, and conspecifics, and the conspicuousness of sexual signals makes them particularly susceptible. Yet, when sexual signals evolve, most attention is paid to impacts on intended receivers (potential mates) rather than fitness consequences for eavesdroppers. Using the rapidly evolving interaction between the Pacific field cricket,Teleogryllus oceanicus, and the parasitoid fly,Ormia ochracea, we asked how parasitoids initially respond to novel changes in host signals. We recently discovered a novel sexual signal, purring song, in Hawaiian populations ofT. oceanicusthat appears to have evolved because it protects the cricket from the parasitoid while still allowing males to attract female crickets for mating. In Hawaii, there are no known alternative hosts for the parasitoid, so we would expect flies to be under selection to detect and attend to the new purring song. We used complementary field and laboratory phonotaxis experiments to test fly responses to purring songs that varied in many dimensions, as well as to ancestral song. We found that flies strongly prefer ancestral song over purring songs in both the field and the lab, but we caught more flies to purring songs in the field than reported in previous work, indicating that flies may be exerting some selective pressure on the novel song. When played at realistic amplitudes, we found no preferences–flies responded equally to all purrs that varied in frequency, broadbandedness, and temporal measures. However, our lab experiment did reveal the first evidence of preference for purring song amplitude, as flies were more attracted to purrs played at amplitudes greater than naturally occurring purring songs. As purring becomes more common throughout Hawaii, flies that can use purring song to locate hosts should be favored by selection and increase in frequency. 
    more » « less
  3. Abstract BackgroundMorphologic sex differences between males and females typically emerge after the primordial germ cell migration and gonad formation, although sex is determined at fertilization based on chromosome composition. A key debated sexual difference is the embryonic developmental rate, within vitroproduced male embryos often developing faster. However, the molecular mechanisms driving early embryonic sex differences remain unclear. ResultsTo investigate the transcriptional sex difference during early development,in vitroproduced bovine blastocysts were collected and sexed by PCR. A significant male-biased development was observed in expanded blastocysts. Ultra-low input RNA-seq analysis identified 837 DEGs, with 231 upregulated and 606 downregulated in males. Functional enrichment analysis revealed male-biased DEGs were associated with metabolic regulation, whereas female-biased DEGs were related to female gonad development, sex differentiation, inflammatory pathways, and TGF-beta signaling. Comparing X chromosome and autosome expression ratio, we found that female-biased DEGs contributed to the higher X-linked gene dosage, a phenomenon not observed in male embryos. Moreover, we identified the sex-biased transcription factors and RNA-bind proteins, including pluripotent factors such asSOX21andPRDM14, and splicing factorsFMR1andHNRNPH2. Additionally, we revealed 1,555 significantly sex-biased differential alternative splicing (AS), predominantly skipped exons, mapped to 906 genes, with 59 overlapping with DEGs enriched in metabolic and autophagy pathways. By incorporating novel isoforms from long reads sequencing, we identified 1,151 sex-biased differentially expressed isoforms (DEIs) associated with 1,017 genes. Functional analysis showed that female-biased DEIs were involved in the negative regulation of transcriptional activity, while male-biased DEIs were related to energy metabolism. Furthermore, we identified sex-biased differential exon usage inDENND1B, DIS3L2, DOCK11, IL1RAPL2,andZRSR2Y,indicating their sex-specific regulation in early embryo development. ConclusionThis study provided a comprehensive analysis of transcriptome differences between male and female bovine blastocysts, integrating sex-biased gene expression, alternative splicing, and isoform dynamics. Our findings indicate that enriched metabolism processes in male embryos may contribute to the faster developmental pace, providing insights into sex-specific regulatory mechanisms during early embryogenesis. Plain English summaryMale and female early embryos develop at different speeds, with male embryos often developing faster than female embryos. However, the reasons behind these early differences remain unclear. In this study, we examined gene activity in bovine embryos to uncover the biological factors regulating these early sex differences. We collected in vitro-produced bovine blastocysts, examined their sex, and confirmed that male embryos develop faster. By analyzing global gene activity, including alternative splicing, which allows one gene to code for multiple RNA isoforms and proteins, we found distinct gene expression profiles between male and female embryos. Male embryos showed higher activity in genes related to metabolism and cellular functions, while female embryos had increased activity in genes associated with female-specific gonad development and gene expression regulation. We also examined differences in how genes on the X chromosome were expressed. Female embryos had higher X-linked gene expression, which may contribute to sex-specific developmental regulation. Additionally, we identified sex-specific transcription factors and RNA-binding proteins that regulate early embryo development, some of which are known to control pluripotency and gene splicing. Overall, our study provides new insights into how gene activity shapes early sex differences, suggesting that enhanced metabolism in male embryos may be a key driver of their faster developmental rate. HighlightsMale embryos develop faster due to increased gene expression in metabolism pathwaysFemale embryos exhibit higher X-linked gene expression, suggesting X-dosage compensation plays a role in early developmentSex-biased alternative splicing events contribute to embryonic metabolism, autophagy, and transcriptional regulation in embryosSex-biased isoform diversity contributes to distinct developmental regulation in male and female embryosKey pluripotency factors (SOX21, PRDM14) and splicing regulators (FMR1, HNRNPH2) drive sex-specific gene expression 
    more » « less
  4. NA (Ed.)
    Antagonistic species relationships such as parasitoid/host interactions lead to evolutionary arms races between species. Many parasitoids use more than one host species, requiring the parasitoid to adapt to multiple hosts, sometimes being the leader or the follower in the evolutionary back-and-forth between species. Thus, multi-species interactions are dynamic and show temporary evolutionary outcomes at a given point in time. We investigated the interactions of the multivoltine parasitoid fly Ormia lineifrons that uses different katydid hosts for each of its fly generations sequentially over time. We hypothesized that this fly is adapted to utilizing all hosts equally well for the population to persist. We quantified and compared the fly’s development in each of the four Neoconocephalus hosts. Cumulative parasitism rates ranged between ~14% and 73%, but parasitoid load and development time did not differ across host species. Yet, pupal size was lowest for flies using N. velox as a host compared to N. triops and other host species. Successful development from pupa to adult fly differed across host species, with flies emerging from N. triops displaying a significantly lower development success rate than those emerging from N. velox and the other two hosts. Interestingly, N. triops and N. velox did not differ in size and were smaller than N. robustus and N. nebrascensis hosts. Thus, O. lineifrons utilized all hosts but displayed especially low ability to develop in N. triops, potentially due to differences in the nutritional status of the host. In the multi-species interactions between the fly and its hosts, the poor use of N. triops may currently affect the fly’s evolution the most. Similarities and differences across host utilization and their evolutionary background are discussed. 
    more » « less
  5. Abstract Amphibians undergo a variety of post‐embryonic transitions (PETr) that are partly governed by thyroid hormone (TH). Transformation into a terrestrial form follows an aquatic larval stage (biphasic) or precedes hatching (direct development). Some salamanders maintain larval characteristics and an aquatic lifestyle into adulthood (paedomorphosis), which obscures the conclusion of their larval period. Paedomorphic axolotls exhibit elevated TH during early development that is concomitant with transcriptional reprogramming and limb emergence. A recent perspective suggested this cryptic TH‐based PETr is uncoupled from metamorphosis in paedomorphs and concludes the larval period. This led to their question:“Are paedomorphs actual larvae?”. To clarify, paedomorphs are only considered larval in form, even though they possess some actual larval characteristics. However, we strongly agree that events during larval development inform amphibian life cycle evolution. We build upon their perspective by considering the evolution of limb emergence and metamorphosis. Limbless hatchling larval salamanders are generally associated with ponds, while limbed larvae are common to streams and preceded the evolution of direct development. Permian amphibians had limbed larvae, so their PETr was likely uncoupled from metamorphosis, equivalent to most extant biphasic and paedomorphic salamanders. Coupling of these events was likely derived in frogs and direct developing salamanders. 
    more » « less