Abstract Metronidazole and nimorazole are antibiotics of a nitroimidazole group which also may be potentially utilized as hypoxia radiosensitizers for the treatment of cancerous tumors. Hyperpolarization of15N nuclei in these compounds using SABRE‐SHEATH (Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei) approach provides dramatic enhancement of detection sensitivity of these analytes using magnetic resonance spectroscopy and imaging. Methanol‐d4is conventionally employed as a solvent in SABRE hyperpolarization process. Herein, we investigate SABRE‐SHEATH hyperpolarization of isotopically labeled [15N3]metronidazole and [15N3]nimorazole in nondeuterated methanol and ethanol solvents. Optimization of such hyperpolarization parameters as polarization transfer magnetic field, temperature, parahydrogen flow rate and pressure allowed us to obtain an average15N polarization of up to 7.2–7.4 % for both substrates. The highest15N polarizations were observed in methanol‐d4for [15N3]metronidazole and in ethanol for [15N3]nimorazole. At a clinically relevant magnetic field of 1.4 T the15N nuclei of these substrates possess long characteristic hyperpolarization lifetimes (T1) of ca. 1 to ca. 7 min. This study represents a major step toward SABRE in more biocompatible solvents, such as ethanol, and also paves the way for future utilization of these hyperpolarized nitroimidazoles as molecular contrast agents for MRI visualization of tumors.
more »
« less
This content will become publicly available on April 22, 2026
Detection of 15 N-labeled metabolites in microbial extracts using AI-designed broadband pulses for 1 H, 15 N heteronuclear NMR spectroscopy
New AI-designed RF pulses increase bandwidth and sensitivity for1H-15N HSQC spectra of metabolites.
more »
« less
- Award ID(s):
- 2304829
- PAR ID:
- 10614586
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- The Analyst
- Volume:
- 150
- Issue:
- 9
- ISSN:
- 0003-2654
- Page Range / eLocation ID:
- 1856 to 1861
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Signal Amplification by Reversible Exchange (SABRE) technique enables nuclear spin hyperpolarization of wide range of compounds using parahydrogen. Here we present the synthetic approach to prepare15N‐labeled [15N]dalfampridine (4‐amino[15N]pyridine) utilized as a drug to reduce the symptoms of multiple sclerosis. The synthesized compound was hyperpolarized using SABRE at microtesla magnetic fields (SABRE‐SHEATH technique) with up to 2.0 %15N polarization. The 7‐hour‐long activation of SABRE pre‐catalyst [Ir(IMes)(COD)Cl] in the presence of [15N]dalfampridine can be remedied by the use of pyridine co‐ligand for catalyst activation while retaining the15N polarization levels of [15N]dalfampridine. The effects of experimental conditions such as polarization transfer magnetic field, temperature, concentration, parahydrogen flow rate and pressure on15N polarization levels of free and equatorial catalyst‐bound [15N]dalfampridine were investigated. Moreover, we studied15N polarization build‐up and decay at magnetic field of less than 0.04 μT as well as15N polarization decay at the Earth's magnetic field and at 1.4 T.more » « less
-
Abstract In oriented‐sample (OS) solid‐state NMR of membrane proteins, the angular‐dependent dipolar couplings and chemical shifts provide a direct input for structure calculations. However, so far only1H–15N dipolar couplings and15N chemical shifts have been routinely assessed in oriented15N‐labeled samples. The main obstacle for extending this technique to membrane proteins of arbitrary topology has remained in the lack of additional experimental restraints. We have developed a new experimental triple‐resonance NMR technique, which was applied to uniformly doubly (15N,13C)‐labeled Pf1 coat protein in magnetically aligned DMPC/DHPC bicelles. The previously inaccessible1Hα–13Cαdipolar couplings have been measured, which make it possible to determine the torsion angles between the peptide planes without assuming α‐helical structure a priori. The fitting of three angular restraints per peptide plane and filtering by Rosetta scoring functions has yielded a consensus α‐helical transmembrane structure for Pf1 protein.more » « less
-
Abstract NMR hyperpolarization techniques enhance nuclear spin polarization by several orders of magnitude resulting in corresponding sensitivity gains. This enormous sensitivity gain enables new applications ranging from studies of small molecules by using high‐resolution NMR spectroscopy to real‐time metabolic imagingin vivo. Several hyperpolarization techniques exist for hyperpolarization of a large repertoire of nuclear spins, although the13C and15N sites of biocompatible agents are the key targets due to their widespread use in biochemical pathways. Moreover, their longT1allows hyperpolarized states to be retained for up to tens of minutes. Signal amplification by reversible exchange (SABRE) is a low‐cost and ultrafast hyperpolarization technique that has been shown to be versatile for the hyperpolarization of15N nuclei. Although large sensitivity gains are enabled by hyperpolarization,15N natural abundance is only ∼0.4 %, so isotopic labeling of the molecules to be hyperpolarized is required in order to take full advantage of the hyperpolarized state. Herein, we describe selected advances in the preparation of15N‐labeled compounds with the primary emphasis on using these compounds for SABRE polarization in microtesla magnetic fields through spontaneous polarization transfer from parahydrogen. Also, these principles can certainly be applied for hyperpolarization of these emerging contrast agents using dynamic nuclear polarization and other techniques.more » « less
-
Fast and reasonable low‐scale (200 nmol) syringe‐made synthesis of15N‐labeled oligonucleotides representing DNA trinucleotide codons is communicated. All codons were prepared by solid‐phase controlled pore glass synthesis column technique via the phosphoramidite method. Twenty‐four labeled oligonucleotides covering the DNA genetic code alphabet were prepared using commercially available reagents and affordable equipment in a reasonably short period of time, with acceptable yields and purity for direct applications in mass spectrometry.more » « less
An official website of the United States government
