skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Diverse Unionable Tuple Search: Novelty-Driven Discovery in Data Lakes. In EDBT 2026.
Unionable table search techniques input a query table from a user and search for data lake tables that can contribute additional rows to the query table. The definition of unionability is gener- ally based on similarity measures which may include similarity between columns (e.g., value overlap or semantic similarity of the values in the columns) or tables (e.g., similarity of table embed- dings). Due to this and the large redundancy in many data lakes (which can contain many copies and versions of the same table), the most unionable tables may be identical or nearly identical to the query table and may contain little new information. Hence, we introduce the problem of identifying unionable tuples from a data lake that are diverse with respect to the tuples already present in a query table. We perform an extensive experimen- tal analysis of well-known diversity algorithms applied to this novel problem and identify a gap that we address with a novel, clustering-based tuple diversity algorithm called DUST. DUST uses a novel embedding model to represent unionable tuples that outperforms other tuple representation models by at least 15% when representing unionable tuples. Using real data lake bench- marks, we show that our diversification algorithm is more than six times faster than the most efficient diversification baseline. We also show that it is more effective in diversifying unionable tuples than existing diversification algorithms.  more » « less
Award ID(s):
2325632 2107248 2348121
PAR ID:
10614593
Author(s) / Creator(s):
; ;
Editor(s):
EDBT
Publisher / Repository:
OpenProceedings.org
Date Published:
Subject(s) / Keyword(s):
Data Management Database Technology Data Lakes
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce the problem of Table Reclamation. Given a Source Table and a large table repository, reclamation finds a set of tables that, when integrated, reproduce the source table as closely as possible. Unlike query discovery problems like Query-by-Example or by-Target, Table Reclamation focuses on reclaiming the data in the Source Table as fully as possible using real tables that may be incomplete or inconsistent. To do this, we define a new measure of table similarity, called error-aware instance similarity, to measure how close a reclaimed table is to a Source Table, a measure grounded in instance similarity used in data exchange. Our search covers not only SELECT-PROJECT- JOIN queries, but integration queries with unions, outerjoins, and the unary operators subsumption and complementation that have been shown to be important in data integration and fusion. Using reclamation, a data scientist can understand if any tables in a repository can be used to exactly reclaim a tuple in the Source. If not, one can understand if this is due to differences in values or to incompleteness in the data. Our solution, Gen- T, performs table discovery to retrieve a set of candidate tables from the table repository, filters these down to a set of originating tables, then integrates these tables to reclaim the Source as closely as possible. We show that our solution, while approximate, is accurate, efficient and scalable in the size of the table repository with experiments on real data lakes containing up to 15K tables, where the average number of tuples varies from small (web tables) to extremely large (open data tables) up to 1M tuples. 
    more » « less
  2. Existing techniques for unionable table search define unionability using metadata (tables must have the same or similar schemas) or column-based metrics (for example, the values in a table should be drawn from the same domain). In this work, we introduce the use of semantic relationships between pairs of columns in a table to improve the accuracy of union search. Consequently, we introduce a new notion of unionability that considers relationships between columns, together with the semantics of columns, in a principled way. To do so, we present two new methods to discover semantic relationship between pairs of columns. The first uses an existing knowledge base (KB), the second (which we call a “synthesized KB”) uses knowledge from the data lake itself. We adopt an existing Table Union Search benchmark and present new (open) benchmarks that represent small and large real data lakes. We show that our new unionability search algorithm, called SANTOS, outperforms a state- of-the-art union search that uses a wide variety of column-based semantics, including word embeddings and regular expressions. We show empirically that our synthesized KB improves the accuracy of union search by representing relationship semantics that may not be contained in an available KB. This result hints at a promising future of creating a synthesized KBs from data lakes with limited KB coverage and using them for union search. 
    more » « less
  3. Existing techniques for unionable table search define unionability using metadata (tables must have the same or similar schemas) or column-based metrics (for example, the values in a table should be drawn from the same domain). In this work, we introduce the use of semantic relationships between pairs of columns in a table to improve the accuracy of the union search. Consequently, we introduce a new notion of unionability that considers relationships between columns, together with the semantics of columns, in a principled way. To do so, we present two new methods to discover the semantic relationships between pairs of columns. The first uses an existing knowledge base (KB), and the second (which we call a "synthesized KB") uses knowledge from the data lake itself. We adopt an existing Table Union Search benchmark and present new (open) benchmarks that represent small and large real data lakes. We show that our new unionability search algorithm, called SANTOS, outperforms a state-of-the-art union search that uses a wide variety of column-based semantics, including word embeddings and regular expressions. We show empirically that our synthesized KB improves the accuracy of union search by representing relationship semantics that may not be contained in an available KB. This result hints at a promising future of creating synthesized KBs from data lakes with limited KB coverage and using them for union search. 
    more » « less
  4. Data summarization is a powerful approach to deal with large-scale data analytics, which has wide applications in web search, recommendation systems, approximate query processing, etc. It computes a small, compact summary that preserves vital properties of the original data. In this paper, we study the data summarization problem of conjunctive query results, i.e., computing a k-size subset of a conjunctive query output, for any given k>0, that optimizes a certain objective. More specifically, we are interested in two commonly studied objectives: cohesion, which measures the maximum distance between a tuple in the query result tuples and its closest tuple in the summary (k-center clustering); and diversity, which measures the pairwise distances between the summary items. A simple approach that computes the entire query output and then applies existing algorithms on top of these materialized tuples suffers from high computational complexity because the query output can be large, e.g., for a relational database of N tuples, the number of result tuples can be NO(1).We propose O(1)-approximation algorithms that compute well-representative summaries of size k in time O(N*kO(1)), or even O(N+ kO(1)) in some cases, without computing all result tuples. We also propose the first efficient (2+\eps)-approximation algorithm for the k-center clustering problem over relational data. Our main idea is to formulate a few oracles that enable us to access specific query result tuples with certain properties, to show how these oracles can be implemented efficiently, and to compute desired summaries with few invocations of these oracles. 
    more » « less
  5. Dataset search is emerging as a critical capability in both research and industry: it has spurred many novel applications, ranging from the enrichment of analyses of real-world phenomena to the improvement of machine learning models. Recent research in this field has explored a new class of data-driven queries: queries consist of datasets and retrieve, from a large collection, related datasets. In this paper, we study a specific type of data-driven query that supports relational data augmentation through numerical data relationships: given an input query table, find the top-k tables that are both joinable with it and contain columns that are correlated with a column in the query. We propose a novel hashing scheme that allows the construction of a sketch-based index to support efficient correlated table search. We show that our proposed approach is effective and efficient, and achieves better trade-offs that significantly improve both the ranking accuracy and recall compared to the state-of-the-art solutions. 
    more » « less