skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 20, 2026

Title: BLEND: A Unified Data Discovery System. In ICDE 2025.
Most research on data discovery has so far focused on improving individual discovery operators such as join, correlation, or union discovery. However, in practice, a combination of these techniques and their corresponding indexes may be necessary to support arbitrary discovery tasks. We propose BLEND, a comprehensive data discovery system that supports existing operators and enables their flexible pipelining. BLEND is based on a set of lower-level operators that serve as fundamental building blocks for more complex and sophisticated user tasks. To reduce the execution runtime of discovery pipelines, we propose a unified index structure and a rule- and cost-based optimizer that rewrites SQL statements into low-level operators when possible. We show the superior flexibility and efficiency of our system compared to ad-hoc discovery pipelines and stand-alone solutions.  more » « less
Award ID(s):
2325632 2107248
PAR ID:
10614698
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Edition / Version:
2025
ISBN:
979-8-3315-3603-9
Page Range / eLocation ID:
737-750
Subject(s) / Keyword(s):
Data Management
Format(s):
Medium: X
Location:
IEEE International Conference on Data Engineering (ICDE)
Sponsoring Org:
National Science Foundation
More Like this
  1. Most research on data discovery has so far focused on improving individual discovery operators such as join, correlation, or union discovery. However, in practice, a combination of these techniques and their corresponding indexes may be necessary to support arbitrary discovery tasks. We propose BLEND, a comprehensive data discovery system that supports existing operators and enables their flexible pipelining. BLEND is based on a set of lower-level operators that serve as fundamental building blocks for more complex and sophisticated user tasks. To reduce the execution runtime of discovery pipelines, we propose a unified index structure and a rule- and cost-based optimizer that rewrites SQL statements into low-level operators when possible. We show the superior flexibility and efficiency of our system compared to ad-hoc discovery pipelines and stand-alone solutions. 
    more » « less
  2. Exploratory Data Analysis (EDA) is a crucial step in any data science project. However, existing Python libraries fall short in supporting data scientists to complete common EDA tasks for statistical modeling. Their API design is either too low level, which is optimized for plotting rather than EDA, or too high level, which is hard to specify more fine-grained EDA tasks. In response, we propose DataPrep.EDA, a novel task-centric EDA system in Python. DataPrep.EDA allows data scientists to declaratively specify a wide range of EDA tasks in different granularity with a single function call. We identify a number of challenges to implement DataPrep.EDA, and propose effective solutions to improve the scalability, usability, customizability of the system. In particular, we discuss some lessons learned from using Dask to build the data processing pipelines for EDA tasks and describe our approaches to accelerate the pipelines. We conduct extensive experiments to compare DataPrep.EDA with Pandas-profiling, the state-of-the-art EDA system in Python. The experiments show that DataPrep.EDA significantly outperforms Pandas-profiling in terms of both speed and user experience. DataPrep.EDA is open-sourced as an EDA component of DataPrep: https://github.com/sfu-db/dataprep. 
    more » « less
  3. Structured data, or data that adheres to a pre-defined schema, can suffer from fragmented context: information describing a single entity can be scattered across multiple datasets or tables tailored for specific business needs, with no explicit linking keys. Context enrichment, or rebuilding fragmented context, using keyless joins is an implicit or explicit step in machine learning (ML) pipelines over structured data sources. This process is tedious, domain-specific, and lacks support in now-prevalent no-code ML systems that let users create ML pipelines using just input data and high-level configuration files. In response, we propose Ember, a system that abstracts and automates keyless joins to generalize context enrichment. Our key insight is that Ember can enable a general keyless join operator by constructing an index populated with task-specific embeddings. Ember learns these embeddings by leveraging Transformer-based representation learning techniques. We describe our architectural principles and operators when developing Ember, and empirically demonstrate that Ember allows users to develop no-code context enrichment pipelines for five domains, including search, recommendation and question answering, and can exceed alternatives by up to 39% recall, with as little as a single line configuration change. 
    more » « less
  4. Surfacing and mitigating bias in ML pipelines is a complex topic, with a dire need to provide system-level support to data scientists. Humans should be empowered to debug these pipelines, in order to control for bias and to improve data quality and representativeness. We propose fairDAGs, an open-source library that extracts directed acyclic graph (DAG) representations of the data flow in preprocessing pipelines for ML. The library subsequently instruments the pipelines with tracing and visualization code to capture changes in data distributions and identify distortions with respect to protected group membership as the data travels through the pipeline. We illustrate the utility of fairDAGs, with experiments on publicly available ML pipelines. 
    more » « less
  5. Data provenance tools capture the steps used to produce analyses. However, scientists must choose among workflow provenance systems, which allow arbitrary code but only track provenance at the granularity of files; provenance APIs, which provide tuple-level provenance, but incur overhead in all computations; and database provenance tools, which track tuple-level provenance through relational operators and support optimization, but support a limited subset of data science tasks. None of these solutions are well suited for tracing errors introduced during common ETL, record alignment, and matching tasks - for data types such as strings, images, etc. Scientists need new capabilities to identify the sources of errors, find why different code versions produce different results, and identify which parameter values affect output. We propose PROVision, a provenance-driven troubleshooting tool that supports ETL and matching computations and traces extraction of content within data objects. PROVision extends database-style provenance techniques to capture equivalences, support optimizations, and enable selective evaluation. We formalize our extensions, implement them in the PROVision system, and validate their effectiveness and scalability for common ETL and matching tasks. 
    more » « less