skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 28, 2026

Title: Mutant: Learning Congestion Control from Existing Protocols via Online Reinforcement Learning
Learning how to control congestion remains a challenge despite years of progress. Existing congestion control protocols have demonstrated efficacy within specific network conditions, inevitably behaving suboptimally or poorly in others. Machine learning solutions to congestion control have been proposed, though relying on extensive training and specific network configurations. In this paper, we loosen such dependencies by proposing Mutant, an online reinforcement learning algorithm for congestion control that adapts to the behavior of the best-performing schemes, outperforming them in most network conditions. Design challenges included determining the best protocols to learn from, given a network scenario, and creating a system able to evolve to accommodate future protocols with minimal changes. Our evaluation on real-world and emulated scenarios shows that Mutant achieves lower delays and higher throughput than prior learning-based schemes while maintaining fairness by exhibiting negligible harm to competing flows, making it robust across diverse and dynamic network conditions  more » « less
Award ID(s):
2201536
PAR ID:
10614721
Author(s) / Creator(s):
; ;
Publisher / Repository:
USENIX
Date Published:
ISSN:
NA
ISBN:
978-1-939133-46-5
Format(s):
Medium: X
Location:
Philadelphia, PA
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite years of research on transport protocols, the tussle between in-network and end-to-end congestion control has not been solved. This debate is due to the variance of conditions and assumptions in different network scenarios, e.g., cellular versus data center networks. Recently, the community has proposed a few transport protocols driven by machine learning, nonetheless limited to end-to-end approaches. In this paper, we present Owl, a transport protocol based on reinforcement learning, whose goal is to select the proper congestion window learning from end-to-end features and network signals, when available. We show that our solution converges to a fair resource allocation after the learning overhead. Our kernel implementation, deployed over emulated and large scale virtual network testbeds, outperforms all benchmark solutions based on end-to-end or in-network congestion control. 
    more » « less
  2. We describe the results of a randomized controlled trial of video-streaming algorithms for bitrate selection and network prediction. Over the last year, we have streamed 38.6 years of video to 63,508 users across the Internet. Sessions are randomized in blinded fashion among algorithms. We found that in this real-world setting, it is difficult for sophisticated or machine-learned control schemes to outperform a "simple" scheme (buffer-based control), notwithstanding good performance in network emulators or simulators. We performed a statistical analysis and found that the heavy-tailed nature of network and user behavior, as well as the challenges of emulating diverse Internet paths during training, present obstacles for learned algorithms in this setting. We then developed an ABR algorithm that robustly outperformed other schemes, by leveraging data from its deployment and limiting the scope of machine learning only to making predictions that can be checked soon after. The system uses supervised learning in situ, with data from the real deployment environment, to train a probabilistic predictor of upcoming chunk transmission times. This module then informs a classical control policy (model predictive control). To support further investigation, we are publishing an archive of data and results each week, and will open our ongoing study to the community. We welcome other researchers to use this platform to develop and validate new algorithms for bitrate selection, network prediction, and congestion control. 
    more » « less
  3. Circuit-switched technologies have long been proposed for handling high-throughput traffic in datacenter networks, but recent developments in nanosecond-scale reconfiguration have created the enticing possibility of handling low-latency traffic as well. The novel Oblivious Reconfigurable Network (ORN) design paradigm promises to deliver on this possibility. Prior work in ORN designs achieved latencies that scale linearly with system size, making them unsuitable for large-scale deployments. Recent theoretical work showed that ORNs can achieve far better latency scaling, proposing theoretical ORN designs that are Pareto optimal in latency and throughput. In this work, we bridge multiple gaps between theory and practice to develop Shale, the first ORN capable of providing low-latency networking at datacenter scale while still guaranteeing high throughput. By interleaving multiple Pareto optimal schedules in parallel, both latency- and throughput-sensitive flows can achieve optimal performance. To achieve the theoretical low latencies in practice, we design a new congestion control mechanism which is best suited to the characteristics of Shale. In datacenter-scale packet simulations, our design compares favorably with both an in-network congestion mitigation strategy, modern receiver-driven protocols such as NDP, and an idealized analog for sender-driven protocols. We implement an FPGA-based prototype of Shale, achieving orders of magnitude better resource scaling than existing ORN proposals. Finally, we extend our congestion control solution to handle node and link failures. 
    more » « less
  4. This paper presents the motivation and design of MTP, a new offload-friendly message transport protocol. Existing transport protocols like TCP, MPTCP, and UDP/Quic all have key limitations when used in a network that may potentially offload computation from end-servers into NICs, switches, and other network devices. To enable important new in-network computing use cases and correct congestion control in the face of ever changing network paths and application replicas, MTP introduces a new message transport protocol design and pathlet congestion control, a new approach where end-hosts explicitly communicate messaging information to network devices and network devices explicitly communicate network path and congestion information back to end-hosts. 
    more » « less
  5. Distributed cloud environments running data-intensive applications often slow down because of network congestion, uneven bandwidth, and data shuffling between nodes. Traditional host metrics such as CPU or memory do not capture these factors. Scheduling without considering network conditions causes poor placement, longer data transfers, and weaker job performance. This work presents a network-aware job scheduler that uses supervised learning to predict job completion time. The system collects real-time telemetry from all nodes, uses a trained model to estimate how long a job would take on each node, and ranks nodes to choose the best placement. The scheduler is evaluated on a geo-distributed Kubernetes cluster on the FABRIC testbed using network-intensive Spark workloads. Compared to the default Kubernetes scheduler, which uses only current resource availability, the supervised scheduler shows 34–54% higher accuracy in selecting the optimal node. The contribution is the demonstration of supervised learning for real-time, network-aware job scheduling on a multi-site cluster. 
    more » « less