skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 20, 2026

Title: Structure-Based Modeling of Environment-dependent Protonation States Across LNP Formulations with Atomistic CpHMD
The pKa values and associated protonation states of ionizable lipids in lipid nanoparticle (LNP) formulations are strongly dependent on their chemical environment. This phenomenon leads to poorly understood structure-function relationships that influence payload delivery, tissue-selective biodistribution, and manufacturing. For example, the charge- and biodistribution of an mRNA-loaded LNP can vary based on the type of ionizable lipid used, the molar ratio of its components, and its cargo. Yet, the spatial resolution of experimental protonation state measurements is currently limited to the apparent charge of an ionizable lipid averaged over all environments/conformations of an LNP — best represented by its apparent pKa value. Such measurements are too coarse to capture the heterogenous charge distributions of ionizable lipids in LNPs, which influence biocorona formation and interactions with the payload. Similar limitations are inherent to classical fixed protonation-state in silico models that cannot capture the environment-dependent protonation states and pKa values determining local pKa. To address this gap in experimental and computational tools available to accurately determine the local charge distributions in LNPs, this work now incorporates a scalable continuous constant pH molecular dynamics (CpHMD) model to simulate the self-assembly processes of five reported distinct LNP formulations. Parameters for ionizable lipids were generated from fitting fixed lambda-state calculations performed with Hamiltonian replica exchange (HREX) to improve conformational sampling during parameterization. Simulated systems were composed of 100 ionizable lipids (50 mol%), cholesterol (40 mol%), distearoylphosphatidylcholine (10 mol%), and mRNA (20 nucleotides) to model the interior of an LNP. Self-assembly was simulated for 100 ns at different pH values to validate the apparent pKa for each system. The theoretically calculated apparent pKa values matched reasonably well with those measured experimentally (mean absolute error = 0.5 pKa units), and all systems exhibited pH-dependent structures. Overall, this work provides a new computational platform technology to (i) predict the pKa values of ionizable lipids in different chemical environments and (ii) enable a structure-based way to model the heterogeneous, environment-dependent charge distributions of ionizable lipids in LNP systems typically encountered during LNP manufacturing and delivery.  more » « less
Award ID(s):
2317652
PAR ID:
10614826
Author(s) / Creator(s):
; ;
Publisher / Repository:
ChemRxiv
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Adding a cationic helper lipid to a lipid nanoparticle (LNP) can increase lung delivery and decrease liver delivery. However, it remains unclear whether charge-dependent tropism is universal or, alternatively, whether it depends on the component that is charged. Here, we report evidence that cationic cholesterol-dependent tropism can differ from cationic helper lipid-dependent tropism. By testing how 196 LNPs delivered mRNA to 22 cell types, we found that charged cholesterols led to a different lung:liver delivery ratio than charged helper lipids. We also found that combining cationic cholesterol with a cationic helper lipid led to mRNA delivery in the heart as well as several lung cell types, including stem cell-like populations. These data highlight the utility of exploring charge-dependent LNP tropism. 
    more » « less
  2. Abstract RNA‐based therapeutics have gained traction for the prevention and treatment of a variety of diseases. However, their fragility and immunogenicity necessitate a drug carrier. Lipid nanoparticles (LNPs) have emerged as the predominant delivery vehicle for RNA therapeutics. An important component of LNPs is the ionizable lipid (IL), which is protonated in the acidic environment of the endosome, prompting cargo release into the cytosol. Currently, there is growing evidence that the structure of IL lipid tails significantly impacts the efficacy of LNP‐mediated mRNA translation. Here, we optimized IL tail length for LNP‐mediated delivery of three different mRNA cargos. Using C12‐200, a gold standard IL, as a model, we designed a library of ILs with varying tail lengths and evaluated their potency in vivo. We demonstrated that small changes in lipophilicity can drastically increase or decrease mRNA translation. We identified that LNPs formulated with firefly luciferase mRNA (1929 base pairs) and C10‐200, an IL with shorter tail lengths than C12‐200, enhance liver transfection by over 10‐fold. Furthermore, different IL tail lengths were found to be ideal for transfection of LNPs encapsulating mRNA cargos of varying sizes. LNPs formulated with erythropoietin (EPO), responsible for stimulating red blood cell production, mRNA (858 base pairs), and the C13‐200 IL led to EPO translation at levels similar to the C12‐200 LNP. The LNPs formulated with Cas9 mRNA (4521 base pairs) and the C9‐200 IL induced over three times the quantity of indels compared with the C12‐200 LNP. Our findings suggest that shorter IL tails may lead to higher transfection of LNPs encapsulating larger mRNAs, and that longer IL tails may be more efficacious for delivering smaller mRNA cargos. We envision that the results of this project can be utilized as future design criteria for the next generation of LNP delivery systems for RNA therapeutics. 
    more » « less
  3. Abstract Chimeric antigen receptor (CAR) monocyte and macrophage therapies are promising solid tumor immunotherapies that can overcome the challenges facing conventional CAR T cell therapy. mRNA lipid nanoparticles (mRNA‐LNPs) offer a viable platform for in situ engineering of CAR monocytes with transient and tunable CAR expression to reduce off‐tumor toxicity and streamline cell manufacturing. However, identifying LNPs with monocyte tropism and intracellular delivery potency is difficult using traditional screening techniques. Here, ionizable lipid design and high‐throughput in vivo screening are utilized to identify a new class of oxidized LNPs with innate tropism and mRNA delivery to monocytes. A library of oxidized (oLNPs) and unoxidized LNPs (uLNPs) is synthesized to evaluate mRNA delivery to immune cells. oLNPs demonstrate notable differences in morphology, ionization energy, and pKa, thereby enhancing delivery to human macrophages, but not T cells. Subsequently, in vivo library screening with DNA barcodes identifies an oLNP formulation, C14‐O2, with innate tropism to monocytes. In a proof‐of‐concept study, the C14‐O2 LNP is used to engineer functional CD19‐CAR monocytes in situ for robust B cell aplasia (45%) in healthy mice. This work highlights the utility of oxidized LNPs as a promising platform for engineering CAR macrophages/monocytes for solid tumor CAR monocyte therapy. 
    more » « less
  4. Abstract With six therapies approved by the Food and Drug Association, chimeric antigen receptor (CAR) T cells have reshaped cancer immunotherapy. However, these therapies rely on ex vivo viral transduction to induce permanent CAR expression in T cells, which contributes to high production costs and long‐term side effects. Thus, this work aims to develop an in vivo CAR T cell engineering platform to streamline production while using mRNA to induce transient, tunable CAR expression. Specifically, an ionizable lipid nanoparticle (LNP) is utilized as these platforms have demonstrated clinical success in nucleic acid delivery. Though LNPs often accumulate in the liver, the LNP platform used here achieves extrahepatic transfection with enhanced delivery to the spleen, and it is further modified via antibody conjugation (Ab‐LNPs) to target pan‐T cell markers. The in vivo evaluation of these Ab‐LNPs confirms that targeting is necessary for potent T cell transfection. When using these Ab‐LNPs for the delivery of CAR mRNA, antibody and dose‐dependent CAR expression and cytokine release are observed along with B cell depletion of up to 90%. In all, this work conjugates antibodies to LNPs with extrahepatic tropism, evaluates pan‐T cell markers, and develops Ab‐LNPs capable of generating functional CAR T cells in vivo. 
    more » « less
  5. Abstract Ionizable lipid nanoparticles (LNPs) are pivotal in combating COVID‐19, and numerous preclinical and clinical studies have highlighted their potential in nucleic acid‐based therapies and vaccines. However, the effectiveness of endosomal escape for the nucleic acid cargos encapsulated in LNPs is still low, leading to suboptimal treatment outcomes and side effects. Hence, improving endosomal escape is crucial for enhancing the efficacy of nucleic acid delivery using LNPs. Here, a mechanical oscillation (frequency: 65 Hz) is utilized to prompt the LNP‐mediated endosomal escape. The results reveal this mechanical oscillation can induce the combination and fusion between LNPs with opposite surface charges, enhance endosomal escape of mRNA, and increase the transfection efficiency of mRNA. Additionally, cell viability remains high at 99.3% after treatment with oscillation, which is comparable to that of untreated cells. Furthermore, there is no obvious damage to mitochondrial membrane potential and Golgi apparatus integrity. Thus, this work presents a user‐friendly and safe approach to enhancing endosomal escape of mRNA and boosting gene expression. As a result, this work can be potentially utilized in both research and clinical fields to facilitate LNP‐based delivery by enabling more effective release of LNP‐encapsulated cargos from endosomes. 
    more » « less