skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 15, 2026

Title: Understanding the Role of Receptor-Interacting-Protein Kinase 2 and X-Linked Inhibitor of Apoptosis Interactions on 5-Lipoxygenase Activation
Inflammation is an essential immune response. However, dysregulated inflammation can result in chronic inflammatory diseases, like Crohn’s disease, Blau syndrome, and early-onset sarcoidosis. Receptor-interacting serine/threonine protein kinase 2 (RIP2) is a kinase that plays a critical role in nucleotide-binding oligomerization domain-containing protein 1 and 2 (NOD1 and 2) signaling pathways, ultimately triggering NF-kB activation and the secretion of pro- inflammatory cytokines. Our laboratory discovered that RIP2 also promotes the activation of arachidonate 5-Lipoxygenase (ALOX5 or 5LO), an enzyme important for producing lipid mediators. Interaction of RIP2 with the X-linked inhibitor of apoptosis protein (XIAP) has been demonstrated to be crucial for NF-kB activation and cytokine production. The purpose of this project is to determine if and how RIP2:XIAP interactions influence ALOX5 activity. This project utilizes transient transfection, competitive inhibition, fractionation, co-immunoprecipitation, SDS- PAGE, and Western blotting to analyze how disrupting RIP2:XIAP interactions influences ALOX5-activating phosphorylation and ALOX5 association with FLAP (5-Lipoxygenase Activating Protein). This study also discusses the development of a fluorescenct imaging assay to capture ALOX5:FLAP interactions. Our results indicate that RIP2:XIAP interactions are dispensable for RIP2-mediated ALOX5 activation. Understanding the mechanisms by which RIP2 influences ALOX5 will be helpful in the design, development, and testing of drugs treating NOD2-associated inflammatory diseases.  more » « less
Award ID(s):
2338587
PAR ID:
10614890
Author(s) / Creator(s):
Publisher / Repository:
University of Central Florida Showcase of Text, Archives, Research & Scholarship (STARS) Repository
Date Published:
Subject(s) / Keyword(s):
NOD2 RIP2 XIAP ALOX5 FLAP
Format(s):
Medium: X
Institution:
University of Central Florida
Sponsoring Org:
National Science Foundation
More Like this
  1. Macrophages are integral components of the innate immune system, playing a dual role in host defense during infection and pathophysiological states. Macrophages contribute to immune responses and aid in combatting various infections, yet their production of abundant proinflammatory cytokines can lead to uncontrolled inflammation and worsened tissue damage. Therefore, reducing macrophage-derived proinflammatory cytokine release represents a promising approach for treating various acute and chronic inflammatory disorders. However, limited macrophage-specific delivery vehicles have hindered the development of macrophage-targeted therapies. In this study, we screened a pool of 112 lipid nanoparticles (LNPs) to identify an optimal LNP formulation for efficient siRNA delivery. Subsequently, by conjugating the macrophage-specific antibody F4/80 to the LNP surface, we constructed MacLNP, an enhanced LNP formulation designed for targeted macrophage delivery. In both in vitro and in vivo experiments, MacLNP demonstrated a significant enhancement in targeting macrophages. Specifically, delivery of siRNA targeting TAK1, a critical kinase upstream of multiple inflammatory pathways, effectively suppressed the phosphorylation/activation of NF-kB. LNP-mediated inhibition of NF-kB, a key upstream regulator in the classic inflammatory signaling pathway, in the murine macrophage cell line RAW264.7 significantly reduced the release of proinflammatory cytokines after stimulation with the viral RNA mimic Poly(I:C). Finally, intranasal administration of MacLNP-encapsulated TAK1 siRNA markedly ameliorated lung injury induced by influenza infection. In conclusion, our findings validate the potential of targeted macrophage interventions in attenuating inflammatory responses, reinforcing the potential of LNP-mediated macrophage targeting to treat pulmonary inflammatory disorders. 
    more » « less
  2. :Diabetes has been linked to an increased risk of mild cognitive impairment (MCI), a conditioncharacterized by a subtle cognitive decline that may precede the development of dementia. Theunderlying mechanisms connecting diabetes and MCI involve complex interactions between metabolicdysregulation, inflammation, and neurodegeneration. A critical mechanism implicated in diabetes andMCI is the activation of inflammatory pathways. Chronic low-grade inflammation, as observed in diabetes,can lead to the production of pro-inflammatory cytokines such as tumor necrosis factor-alpha(TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and interferon-gamma (IFNγ), each of whichcan exacerbate neuroinflammation and contribute to cognitive decline. A crucial enzyme involved inregulating inflammation is ADAM17, a disintegrin, and metalloproteinase, which can cleave and releaseTNF-α from its membrane-bound precursor and cause it to become activated. These processes, inturn, activate additional inflammation-related pathways, such as AKT, NF-κB, NLP3, MAPK, andJAK-STAT pathways. Recent research has provided novel insights into the role of ADAM17 in diabetesand neurodegenerative diseases. ADAM17 is upregulated in both diabetes and Alzheimer's disease,suggesting a shared mechanism and implicating inflammation as a possible contributor to muchbroader forms of pathology and pointing to a possible link between inflammation and the emergenceof MCI. This review provides an overview of the different roles of ADAM17 in diabetes-associatedmild cognitive impairment diseases. It identifies mechanistic connections through which ADAM17and associated pathways may influence the emergence of mild cognitive impairment. 
    more » « less
  3. Kramer, Achim (Ed.)
    In mammals, the circadian clock coordinates cell physiological processes including inflammation. Recent studies suggested a crosstalk between these two pathways. However, the mechanism of how inflammation affects the clock is not well understood. Here, we investigated the role of the proinflammatory transcription factor NF-κB in regulating clock function. Using a combination of genetic and pharmacological approaches, we show that perturbation of the canonical NF-κB subunit RELA in the human U2OS cellular model altered core clock gene expression. While RELA activation shortened period length and dampened amplitude, its inhibition lengthened period length and caused amplitude phenotypes. NF-κB perturbation also altered circadian rhythms in the master suprachiasmatic nucleus (SCN) clock and locomotor activity behavior under different light/dark conditions. We show that RELA, like the clock repressor CRY1, repressed the transcriptional activity of BMAL1/CLOCK at the circadian E-box cis-element. Biochemical and biophysical analysis showed that RELA binds to the transactivation domain of BMAL1. These data support a model in which NF-kB competes with CRY1 and coactivator CBP/p300 for BMAL1 binding to affect circadian transcription. This is further supported by chromatin immunoprecipitation analysis showing that binding of RELA, BMAL1 and CLOCK converges on the E-boxes of clock genes. Taken together, these data support a significant role for NF-κB in directly regulating the circadian clock and highlight mutual regulation between the circadian and inflammatory pathways. 
    more » « less
  4. Necroptosis is a type of programed cell death characterized by an inflammatory phenotype due to extensive membrane permeabilization and rupture. Initiation of necroptosis involves activation of tumor necrosis factor receptors by tumor necrosis factor alpha (TNFα) followed by coordinated activities of receptor-interacting protein kinases and mixed lineage kinase-like protein (MLKL). Subsequently, MLKL undergoes phosphorylation and translocates to the plasma membrane, leading to permeabilization. Such permeabilization results in the release of various cytokines and causes extensive inflammatory activity at the organismal level. This inflammatory activity is one of the major differences between apoptosis and necroptosis and links necroptosis to several human pathologies that exhibit inflammation, in addition to the ultimate cell death phenotype. Given the crosstalk between the activation of cell death pathway and inflammatory activity, approaches that provide insights on the regulation of transcripts, proteins and their processing at the global level have substantially improved our understanding of necroptosis and its involvement in different disease states. In this review, we highlight recent omic studies probing the transcriptome, proteome and lipidome which elucidate potential new mechanisms and signaling pathways during necroptosis and the necroptosis-associated inflammatory activity observed in various diseases. We specifically focus on studies investigating the transcriptome and intracellular and released proteome that contribute to inflammatory nature of necroptotic cells. We also highlight different lipids that have been implicated in necroptosis and lipidomic studies identifying lipid players in necroptosis. Finally, we review studies which suggest certain necroptosis-related genes as potential prognosis markers for different cancers and discuss their translational implications. 
    more » « less
  5. Surfactant protein A (SP-A) plays an important role in innate immune response and host defense against various microorganisms through opsonization and complement activation. To investigate the role of SP-A in non-typeable Haemophilus influenzae (NTHi)-induced acute otitis media, this study used wild type C57BL/6 (WT) and SP-A knockout (KO) mice. We divided mice into an infection group in which the middle ear (ME) was injected with NTHi and a control group that received the same treatment using normal saline. Mice were sacrificed on d 1, 3, and 7 after treatment. Temporal bone samples were fixed for histological, cellular, and molecular analyses. Ear washing fluid (EWF) was collected for culture and analyses of pro-inflammatory cytokines and inflammatory cells. SP-A-mediated bacterial aggregation and killing and phagocytosis by macrophages were studied in vitro. SP-A expression was detected in the ME and Eustachian tube mucosa of WT mice but not KO mice. After infection, KO mice showed more severe inflammation evidenced by increased ME mucosal thickness and inflammatory cell infiltration and higher NF-κB activation compared to WT mice. The levels of IL-6 and IL-1β in the EWF of infected KO mice were higher compared to infected WT mice on d 1. Our studies demonstrated that SP-A mediated NTHi aggregation and killing and enhanced bacterial phagocytosis by macrophages in vitro and modulated inflammation of the ME in otitis media in vivo. 
    more » « less